Exciton states in semiconductor nanosystems
DOI: https://doi.org/10.15407/hftp07.03.285
Abstract
The theory of QDs exciton absorption of light has been developed within the framework of the adiabatic approximation, using perturbation theory. It has been shown that the band gap of zinc selenide QDs exciton states a zone arises located under the bottom of the conduction band. It has been found that the decrease in the band gap in the nanosystems detected under the experimental conditions is due to the transition of an electron with a nonequilibrium quantum-level situated in the valence QD to the level of the zone of the exciton states.
It has been found that changing the parameters of nanostructures (QD size, the ratio of effective masses of electrons and holes, the values of the dielectric constants of matrices and QD) can be directed to control the fundamental parameters of nanostructures - band gaps. This effect causes the radiation of energy quanta of restructuring in the visible and near-infrared wavelengths. Such nanoheterostructures are promising for new nanophotonic elements.
Keywords
References
1. Ekimov A.I., Onuschenko A.A. The quantum size effect in three-dimensional microscopic semiconductors. JETP Lett. 1981. 34(6): 363.
2. Ekimov A.I., Onuschenko A.A. Size quantization of the electron energy spectrum in a microscopic semiconductor. JETP Lett. 1984. 40(8): 337.
3. Ekimov A.I., Efros Al.L., Onuschenko A.A. Quantum size effect in semiconductor microcrystals. Sol. Stat. Commun. 1985. 56(11): 921. https://doi.org/10.1016/S0038-1098(85)80025-9
4. Ekimov A.I., Onuschenko A.A., Efros Al.L. The quantization of the energy spectrum of the holes in the adiabatic potential of the electron. JETP Lett. 1986. 43(6): 292.
5. Chepic D.I., Efros Al.L., Ekimov A.I., Ivanov M.G., Kharchenko V.A., Kudriavtsev I.A., Yazeva T.V. Auger ionization of semiconductor quantum drops in a glass matrix. J. Luminis. 1990. 47(3): 113. https://doi.org/10.1016/0022-2313(90)90007-X
6. Ekimov A. I., Kudryavtsev I. A., Efros Al. L., Yazeva T. V., Hache F., Schanne-Klein M. C., Rodina A. V., Ricard D., Flytzanis C. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B. 1993. 10(1): 100. https://doi.org/10.1364/JOSAB.10.000100
7. Grabovskis V.J., Dzenis Y.Y., Ekimov A.I., Kudryavtsev I.A., Tolstoy M.N., Rogulis U.T. Photoionization semiconductor microcrystals in the glass. Solid State Phys. 1989. 31(1): 272.
8. Alferov Z. The history and future of semiconductor heterostructures. Semiconductors. 1998. 32(1): 3. https://doi.org/10.1134/1.1187350
9. Alferov Z. The double heterostructure: concept and applications in physics, electronics and technology. Progr. Phys. Sciences. 2002. 172(9): 1068. https://doi.org/10.1142/s0217979202010233
10. Bondar N.V., Brodin M.S. Evolution of exciton states in two-phase systems with quantum dots II-VI semiconductors near the percolation threshold. Semiconductors. 2010. 44(7): 915. https://doi.org/10.1134/S1063782610070109
11. Pokutny S.I. Exciton states in semiconductor nanostructures spherical. Semiconductors. 2005. 39(9): 1101. https://doi.org/10.1134/1.2042600
12. Pokutnyi S.I., Jacak L., Misiewicz J., Salejda W., Zegrya G.G. Stark effect in semiconductor quantum dots. J. Appl. Phys. 2004. 96(2): 1115. https://doi.org/10.1063/1.1759791
13. Pokutnyi S.I. The absorption and scattering of light at the single-particle states of the charge carriers in semiconductor quantum dots. Semiconductors. 2006. 40(2): 223.
14. Pokutnyi S.I. Optical nanolaser on the heavy hole transition in semiconductor nanocrystals: Theory. Phys. Lett. A. 2005. 342(4): 347. https://doi.org/10.1016/j.physleta.2005.04.070
15. Pokutnyi S.I. Exciton states in semiconductor quantum dots under the modified method of effective mass. Semiconductors. 2007. 41(11): 1341. https://doi.org/10.1134/S1063782607110097
16. Pokutnyi S.I. The binding energy of an exciton in a semiconductor quantum dots. Semiconductors. 2010. 44(4): 507. https://doi.org/10.1134/s1063782610040147
17. Soloviev V.N., Eeichofer A., Frenske D., Banin U. Molecular Limit of a Bulk Semiconductor: Size Dependent Optical Spectroscopy Study of CdSe Cluster Molecules. Phys. Stat. Sol. B. 2001. 224(1): 285. https://doi.org/10.1002/1521-3951(200103)224:1<285::AID-PSSB285>3.0.CO;2-G
18. Collins R.T., Fauchet P.M., Tischler M.A. Porous silicon: from luminescence to LEDs. Phys. Today. 2008. 50(1): 24. https://doi.org/10.1063/1.881650
19. Yeh C.Y., Zhang S.B., Zunger A. Confinement, surface, and chemisorption effects on the optical properties of Si quantum wires. Phys. Rev. B. 1994. 50(19): 14405. https://doi.org/10.1103/PhysRevB.50.14405
20. Delerue C., Allan G., Lannoo M. Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B. 1993. 48(15): 11024. https://doi.org/10.1103/PhysRevB.48.11024
21. Read A.J., Needs R.J., Nash K.J., Canham L.T., Calcott P.D.J., Qteish A. First-principles calculations of the electronic properties of silicon quantum wires. Phys. Rev. Lett. 1992. 69(8): 1232. https://doi.org/10.1103/PhysRevLett.69.1232
22. Buda F., Kohanoff J., Parrinello M. Optical properties of porous silicon: A first-principles study. Phys. Rev. Lett. 1992. 69(8): 1272. https://doi.org/10.1103/PhysRevLett.69.1272
23. Pokutnyi S.I. Size quantization of exciton in semiconductor quantum dots. Phys. Low. – Dim. Struct. 2002. 78: 39.
24. Efremov N.A., Pokutny S.I. The energy spectrum of the exciton in a small spherical semiconductor particles. Solid State Phys. 1990. 32(6): 1637.
25. Pokutny S.I. Size quantization of electron-hole pairs in the semiconductor structures of quasi-zero. Semiconductors. 1991. 25(4): 628.
26. Pokutnyi S.I. Size quantization of excitons in quasi-zero-dimensional semiconductor structures. Phys. Lett. A. 1992. 168(5): 433. https://doi.org/10.1016/0375-9601(92)90531-P
DOI: https://doi.org/10.15407/hftp07.03.285
Copyright (©) 2016 S. I. Pokutnyi, P. P. Gorbyk, S. M. Mahno, S. L. Prokopenko
This work is licensed under a Creative Commons Attribution 4.0 International License.