Chemistry, Physics and Technology of Surface, 2016, 7 (3), 309-321.

Properties of oxide Zn-Mo systems synthesized by mechanochemical treatment



DOI: https://doi.org/10.15407/hftp07.03.309

O. V. Sachuk, V. O. Zazhygalov, L. S. Kuznetsova, M. M. Tsyba

Abstract


The mechanochemical treatment of ZnO-MoO3 mixtures with different molar ration of the oxides (15/85, 25/75, 50/50 and 75/25) has been studied. The treatment was realized at 550 rpm, BPR = 10 (sample mass was equal to 10 g) and variation of treatment time (2, 4 and 8 h). The properties of the obtained samples were investigated by means of XRD, IR, DTA, BET, SEM methods. It was shown that for all the compositions after 2 h of treatment the decrease of XRD reflexes intensity of initial oxides and their broadening were observed. This fact can be connected with a decrease of oxides particles size which was confirmed by calculation and SEM data. An increase of treatment time for the mixtures with ZnO/MoO3 = 15/85 and 75/25 was accompanied by subsequent decrease of reflexes intensity and the most intense reflexes of MoO3 and ZnO, respectively, were fixed in these compositions only. In the case of the ZnO/MoO3 = 25/75 and 50/50 mixtures the increase of treatment time up to 4 h leads to an appearance of new reflexes which can characterized the formation of MoO3·0.5H2O and ZnMoO4 phases. The IR-spectra confirm the change of phase composition of these mixtures and SEM data show the changes of the crystallites habitus. After 8 h treatment, the future changes in the composition of these mixtures were observed. Treatment of ZnO/MoO3 = 25/75 was accompanied by little increase of both phases reflexes intensity but in the case of ZnO/MoO3 = 50/50 the reflexes of ZnMoO4phase were fixed only. The DTA data confirm the changes of these mixtures composition provoked by mechanochemical treatment. BET data show that treatment of ZnO/MoO3 = 50/50 leads to the increase in specific surface area of the sample from 2 up to 9 m2/g and to the appearance of micro- and mesopores in solid (initial mixture was a non-porous composition). So, the chemical reaction between ZnO and MoO3 initiated by mechanochemical treatment with formation of new ZnMoO4 phase with bi-porous structure was found.

Keywords


mechanochemical treatment; zinc-molybdenum composition; zinc molybdate

Full Text:

PDF (Українська)

References


1. Golodets G.I. Heterogeneous catalytic reactions involving molecular oxygen. (Amsterdam: Elsevier Science, 1983).

2. Hodnett B.K. Heterogeneous catalytic oxidation: Fundamental and technological aspects of the selective and total oxidation of organic compounds. (N.-Y.: Wiley, 2000).

3. Armor J.N. New catalytic technology commercialized in the USA during the 1990s. Appl. Catal. A. 2001. 222(2):407.  https://doi.org/10.1016/S0926-860X(01)00846-8 

4. Centi G., Cavani F., Trifiro F. Selective oxidation by heterogeneous catalysis. (N.Y.: Kluwer Acad., 2001). https://doi.org/10.1007/978-1-4615-4175-2  

5. Horvath I.T. Encyclopedia of Catalysis. V. 6. (N.Y.: Wiley and Sons, 2003).

6. Ertl G., Knozinger H., Schuth F., Wietkamp J. Handbook of Heterogeneous Catalysis. V. 8. (N.Y.: Wiley-VCH, 2008). https://doi.org/10.1002/9783527610044  

7. Kołodziejczak-Radzimska A., Jesionowski T. Zinc Oxide From Synthesis to Application: A Review. Materials. 2014. 7: 2833. https://doi.org/10.3390/ma7042833    

8. Georgekutty R., Seery M.K., Pillai S.C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties and mechanism. J. Phys. Chem. C. 2008. 112: 13563.  https://doi.org/10.1021/jp802729a 

9. Papp J., Soled S., Dwight K., Wold A. Surface acidity and photocatalytic activity of TiO2, WO3/TiO2 and MoO3/TiO2 photocatalysts. Chem. Mater. 1994. 6(4): 496.  https://doi.org/10.1021/cm00040a026 

10. Temperoni C., Cignini P., Icovi M., Panero S. Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Part III. Cells based on Mo18O52. J. Electroanal. Chem.1980. 108(2): 169.   https://doi.org/10.1016/S0022-0728(80)80465-7  

11. Girard V., Chiche D., Baudot A., Bazer-Bachi D., Clémençon I., Moreaua F., Geantet C. Innovative low temperature regenerable zinc based mixed oxide sorbents for synthesis gas desulfurization. Fuel. 2015. 140: 453.   https://doi.org/10.1016/j.fuel.2014.09.090  

12. Nakamura K., Eda K., Hasegawa S., Sotani N. Reactivity for isomerization of 1-butene on the mixed MoO3-ZnO oxide catalyst. Appl. Catal. A. 1999. 178: 167.  https://doi.org/10.1016/S0926-860X(98)00291-9 

13. Cavalcante L.S., Sczancoski J.C., Li M.S., Longoa E., Varela J.A. β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties. Colloids Surf. A. 2012. 396: 346.   https://doi.org/10.1016/j.colsurfa.2011.12.021  

14. Cavalcante L.S., Moraes E., Almeida M.A.P., Dalmaschio C.J., Batista N.C., Varela J.A., Longo E., Siu Li M., Andrés J., Beltrán A. A combained theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron. 2013. 54: 13.   https://doi.org/10.1016/j.poly.2013.02.006  

15. Ivleva L. I., Voronina I. S., Berezovskaya L.Yu., Lykov P. A., Osiko V.V., Iskhakova L.D. Growth and Properties of ZnMoO4 Single Crystals. Crystallogr. Rep. 2008. 53(6): 1087.   https://doi.org/10.1134/S1063774508060266  

16. Zhang G., Yu S., Yang Y., Jiang W, Zhang S., Huang B. Synthesis, morphology and phase transition of the zinc molybdates ZnMoO4×0.8H2O/α-ZnMoO4/ZnMoO4 by hydrothermal method. J. Crystal Growth. 2010. 312: 1866.   https://doi.org/10.1016/j.jcrysgro.2010.02.022  

17. Peng C., Gao L., Yang S., Sun J. A general precipitation strategy for large-scale synthesis of molybdate nanostructures. Chem. Commun. 2008. 43: 5601.  https://doi.org/10.1039/b812033a 

18. Klissurski D., Mancheva M., Iordanova R., Kunev B. Synthesis of Cr2(MoO4)3 from mechanically activated precursors. Chemistry for sustainable development. 2005. 13: 229.

19. Klissurski D., Radev D., Iordanova R., Milanova M. Mechanochemically assisted synthesis of Bi2Mo3O12 catalysts. Chemistry for sustainable development. 2005. 13: 225.

20. Klissurski D., Mancheva M., Iordanova R., Tyuliev G., Kunev B. Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloys Compd. 2006. 422: 53.  https://doi.org/10.1016/j.jallcom.2005.11.073  

21. Molchanov V.V., Buyanov R.A., Tsybulya S.V., Kryukova G.N., Shmakov A.N., Boronin A.I., Volodin A.M. Effect of Mechanochemical Activation on the Catalytic Properties of Zinc Oxide. Kinet. Catal. 2004. 45(5): 684.   https://doi.org/10.1023/B:KICA.0000044980.30041.4f 

22. Takahashi H., Tsutsumi K. Mechanochemical effects on zinc oxide powder crystals. J. Dechema-Monographien. 1967. 57: 475.

23. Poluboyarov V.A., Chumachenko N.N., Avvakumov E.G. A study of molybdenum oxide and vanadium-molybdenum compounds subjected to mechanical activation by ESR and XRD methods. Research report. 1989. 6: 130.

24. Mestl G., Herzog B., Schlögl R., Knözinger H. Mechanically activated MoO3. 1. Particle size, crystallinity, and morphology. Langmuir. 1995. 11(8): 3027.  https://doi.org/10.1021/la00008a030

25. Mestl G., Verbrunggen N.F.D., Knözinger H. Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir. 1995. 11(8): 3035.   https://doi.org/10.1021/la00008a031 

26. Mestl G., Srinivasan T.K.K., Knözinger H. Mechanically activated MoO3. 3. Characterization by vibration spectroscopy. Langmuir. 1995. 11(10): 3795. https://doi.org/10.1021/la00010a033 

27. Poluboyarov V.A., Kisilevich S.N., Kirichenko O.A., Pauli I.A., Korotaeva Z.A., Dektarev S.P., Ancharov A.I. Mechanical treatment and physicochemical properties of MoO3. Inorganic materials.1998. 34(11):1365

28. Bogutskaya L.V., Khalameida S.V., Zazhigalov V.A., Kharlamov A.I., Lyashenko L.V., Byl'O.G. Effect of mechanochemical treatment on the structure and physicochemical properties of MoO3. Theor. Exp. Chem. 1999. 35(4): 242.   https://doi.org/10.1007/BF02511524 

29. Wieczorek-Ciurowa K., Litvin N., Zazhigalov V. Osobliwiści mechanochemicznej aktywacji MoO3 w odniesieniu do katalytycznego procesu przetwarzania bioetanolu. Przemysl Chem. 2011. 90(7): 1404.  

30. Zazhigalov V.A. Effect of mechanochemical treatment on the kinetic properties of V, Mo, Ti – containing oxide systems. Theor. Exp. Chem. 2013. 49(3): 178.  https://doi.org/10.1007/s11237-013-9312-z  

31. Heinicke G. Tribochemistry. (Academie-Verlag, Berlin, 1984).

32. Zazhigalov V.A., Wieczorek-Ciurowa K. Mechanochemiczna aktywacja katalizatorów wanadowych. (Kraków: Politechnika Krakowska, 2014).

33. Chiang T.H., Yeh H.C. The synthesis of α-MoO3 by ethylene glycol. Materials. 2013. 6: 4609.  https://doi.org/10.3390/ma6104609 

34. Stoyanova A., Iordanova R., Mancheva M., Dimitriev Y. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. J. Optoelectronics Adv. Mater. 2009. 11(8): 1127.

35. Boldyrev V.V. Mechanochemistry and mechanical activation of solids. Izvestiya Academii Nauk SSSR. 1990. 39(10): 2029.  https://doi.org/10.1007/bf01557732

36. Avvakumov E.G., Senna M., Kosova N.V. Soft mechanochemical synthesis: A basis for new chemical technologies. (Dordrecht: Kluwer Acad. Publ., 2001).

37. Balaż P. Mechanochemistry in nanoscience and minerals engineering. (Berlin: Springer, 2008).

38. Seguin L., Figlarz M., Cavagnat R., Lassègues J.-C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·H2O molybdenum trioxide hydrares. Spectrochim. Acta Part A. 1995. 51(8): 1323.   https://doi.org/10.1016/0584-8539(94)00247-9  

39. Kumar V., Lee P.S. Redox active polyaniline-h-MoO3 hollow nanorods for improved pseudocapacitive performance. J. Phys. Chem. C. 2015. 119(17): 9041. https://doi.org/10.1021/acs.jpcc.5b00153  

40. Wean T.Y., Ramli I., Hin T-Y.Y. Effect of calcination temperature on the physicochemical properties of MoV oxides prepared via reflux method. Malaysian J. Anal. Sci. 2007. 11(1): 139.

41. Viswanatha R., Venkatesh T.G., Vidyasagar C.C., Arthoba Nayaka Y. Preparation and characterization of ZnO and Mg-ZnO nanoparticles. Archives of applied science research. 2012. 4(1): 480.

42. Irmawati R., Shafizah M. The Production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int. J. Bas. Appl. Sci. 2009. 9(9): 34.

43. Talam S., Karumuri S. R., Gunnam N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. Int. Scholarly Res. Network Volume. 2012. Article ID 372505, 6 pages.

44. Farag K., Hanafi Z.M., Dawy M., Abd E.l., Aziz E.M. Characterization of ZnO nanopowders synthesized by the direct precipitation method. Canad. J. Pure Appl. Sci. 2010.4(3): 1303.  

45. Gregg S.J., Sing K.S.W. Adsorption surface area and porosity. (Academic Press, Inc., 1982).Yin J.

46. Gao F., Wei C., Lu Q. Water amount dependence on morphologies and properties of ZnO nanostructures in double-solvent system. Scientific Reports. 2014. 4(3736): 1.https://doi.org/10.1038/srep03736




DOI: https://doi.org/10.15407/hftp07.03.309

Copyright (©) 2016 O. V. Sachuk, V. O. Zazhygalov, L. S. Kuznetsova, M. M. Tsyba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.