Chemistry, Physics and Technology of Surface, 2016, 7 (3), 322-329.

Influence of low-temperature treatment on the properties of the amorphous iron alloys



DOI: https://doi.org/10.15407/hftp07.03.322

O. M. Hertsyk, T. G. Pereverzieva, M. A. Kovbuz, L. M. Boichyshyn

Abstract


Amorphous metallic alloys (AMA) have unique physico-chemical properties. Complex investigation of the chemical activity of Fe-Si-B alloy determines the appropriateness of its using in various fields of science and technology. The aim of our investigation is to identify the influence of low-temperature modification on corrosion resistance of the tape amorphous metallic alloy Fe80Si6B14. The influence of low-temperature treatment (T = 77 K) on electrochemical parameters of the AMA in the 0.5 M aqueous solution of NaCl tested using potentiostat PI-50-1 and Autolab® / PGSTAT-20. X-ray diffraction of the AMA samples carried out on the diffractometer DRON-3,0M (CuKα-radiation; Ni-filter). The nature of the modified samples diffractograms indicates absence of significant changes in the structure of the samples. Clearly, only near-surface layer is changed, which is responsible for the electrochemical behavior of the amorphous alloy. Potentiometric investigation of the AMA samples after previous low-temperature treatment causes passivation of the both surfaces of the tape, potential values move to anodic side due to staying samples at T = 77 K for 0.5‒2.0 hours. Multiple cyclic scanning of the potential reduces the corrosion resistance of the AMA surface, but increasing duration of cryogenic treatment does not cause increasing dissolution of metallic components of the protected surface. Analysis of the electrochemical impedance spectroscopy has shown that the greatest resistance of the surface films can be observed in case of contact side of the tape AMA Fe80Si6B14. Thus, the low-temperature modification of the Fe80Si6B14 samples causes no changes in their structure, but assists reduction of their capability to dissolve in 0.5 M aqueous solution of the NaCl.

Keywords


iron alloys; low-temperature treatment; chemical resistance; corrosion stability

Full Text:

PDF (Українська)

References


1. Gusev A.I. The effects of the nancrystalline state in solids. Physics-Uspekhi. 1988. 168(1): 57. [in Russian].

2. Cowell E.W., Knutson Chr.C., Wager J.F., Keszler D.A. Amorhous Metal / Oxide Nanolaminate. ACS Appl. Mater. Interfaces. 2010. 2(7): 1811.

3. Ustynova S.V. Lowtemperature cyclic treatment of alloys system REM-Fe-B. Visnyk Zaporiz'kogo universytetu. 2000. 2: 171. [in Ukrainian].

4. Volkov D., Timofeev S., Turobanov M. Investigation of nanomaterial for criogenic applications. International Referred Journal of Engeniering and Science. 2013. 2: 06.

5. Hanada T., Sakamoto T., Ohkubo T., Hirotsu Y., Kanekiyo H., Hirosawa S. Local atomic structure of amorphous Nd4,5Fe77B18,5 alloys formed under differend rates and their relation to the structures in the early stage of crystallization. Mater. Trans. 2003. 44(10): 2042. https://doi.org/10.2320/matertrans.44.2042 

6. Glezer A.M. Amorphous and nanocrystalline structures: similarities, differences, reciprocal conversions. Ros. Him. Zh. 2002. XLVI(5): 57. [in Russian].

7. Iveronova V.I., Katsnel'son A.A. Short range order in solid solutions. (Moscow: Nauka, 1977). [in Russian].

8. Shpak A.P., Kunytskyi Yu.A., Samoilenko Z.A. Self-organization of structure in materials with different nature. (Kiev: Akademperiodika, 2002). [in Russian].

9. Mudryi S.I., Korolyshyn A.V., Kotur B.Ya., Bednars'ka L.M., Hertsyk O.M., Kovbuz M.O. Evaluation of the volume fraction of the crystalline phase in amorphous alloys. Mater. Sci. 2005. 41(3): 427.     https://doi.org/10.1007/s11003-005-0182-y  

10. Umanskii Ya.S., Skakov Yu.A. Physics of metals. Atomic structure of metals and alloys. (Moscow: Atomizdat, 1987). [in Russian].

11. Zabelin S.F., Zelensky V.A. Kinetics features of nanocrystallization of amorphous metal materials at non-stationary modes of thermal influences. Physics, mathematics, technics, technology. 2012. 3: 62. [in Russian].

12. Brud'ko O.P., Zaichenko S.G., Zakharenko M.I. Influence of low-temperature treatment on thermomagnetic behavior of Fe- and Co-based amorphous alloys. Functional Materials. 2003. 10(3): 493.

13. Boll R., Warlimont H. Applications of amorphous magnetic materials in electronics. IEEE Trans. Magn. 1981. 17(6): 3053. https://doi.org/10.1109/TMAG.1981.1061565  

14. Klymenko Yu.A., Mamunya Ye.P., Levchenko V.V., Semeniv O.V., Prutsko Yu.V., Yatsenko V.A. New nanocomposite materials for electromechanical space sensors. Kosmichne materialoznavstvo. 2015. 21(1): 59. [in Ukrainian]. 




DOI: https://doi.org/10.15407/hftp07.03.322

Copyright (©) 2016 O. M. Hertsyk, T. G. Pereverzieva, M. A. Kovbuz, L. M. Boichyshyn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.