Chemistry, Physics and Technology of Surface, 2016, 7 (3), 330-336.

Peculiarities of «host–guest» complexation between double-walled carbon nanotubes and bis(cyclopentadienyl)nickel



DOI: https://doi.org/10.15407/hftp07.03.330

O. V. Mykhailenko

Abstract


Unique physical properties of multi-walled nanosystems have been the subject of keen interest lately. Their specific energy-band structures with a zero band gap and linear dependence of electron and hole energy spectrum on the wave-vector cause the electric charges to behave like relativist particles with zero effective mass. Anomalous transportation and field effects open a wide prospect of their applying in nanoelectronics. Such nanostructures are assumed to be promising spintronics materials due to the long electron free path, weak spin-orbital interaction and the long spin scattering. What is more, the chemical or physical modification of multi-walled nanosystems enables to reveal their new extraordinary features. Thus, intercalation with molecules allows to change the Fermi level position, relative electron and hole concentration without considerable changes in energy-band structure of source nanomaterials.  On the other hand, unique optical, electrical and magnetic, and also biological behaviour of cyclopentadienyl complexes stimulates creation on their base of intercalates with multi-walled CNT, since the capability of these complexes to coordinate with MWCNT allows to obtain new materials as effective elements for photo- and magnetosensitive devices, drug delivery, imaging and therapy, as well to use these materials as an antidetonant in motor and aviation fuels. By employing the methods of MM+, РМ3 and Monte-Carlo, there has been studied the positioning of molecules of bis(cyclopentadienyl)nickel in a double-walled (5,5)@(10,10) carbon nanotube depending on intercalate concentration and intercalation temperature. The temperature increase (over ~455 K) causes gradual bond ruining followed by extrusion of interwall intercalate. Further temperature increase up to 620 K is characterised with intercalate external surface desorption, stabilising the whole system and keeping the interwall intercalate only. There have been calculated the UV-spectra for (5,5)@(10,10) DWCNT depending on the intercalate concentration as well as an association constant of the system which makes 36,2 l·mol-1.

Keywords


intercalation; bis(cyclopentadienyl)nickel; double-walled carbon nanotube; “host-guest” complex

Full Text:

PDF (Українська)

References


1. Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., Geim A.K. Two-dimensional atomic crystals. Proc. Nat. Acad. Sci. USA. 2005. 102(30): 10451.   https://doi.org/10.1073/pnas.0502848102 

2. Son Y.-W., Cohen M.L., Louie S.G. Half-metallic graphene nanoribbons. Nature. 2006. 444: 347.  https://doi.org/10.1038/nature05180   

3. Geim A.K., Novoselov K.S. The structure of suspended graphene sheets. Nature. 2007. 446: 60.  https://doi.org/10.1038/nature05545  

4. Matsui D.V., Prylutskyy Yu.I., Matzuy L.Yu. Le Normand F., Ritter U., Scharff P. Transverse and longitudinal magnetoresistance in graphite intercalated by Co. Physica E. 2008. 40(7): 2630.   https://doi.org/10.1016/j.physe.2007.09.121  

5. Matsui D., Ovsiyenko I., Lazarenko O., Prylutskyy Yu., Matsui V. Abnormal electron transport in graphite intercalation compounds with iron. Mol. Cryst. Liq. Cryst. 2011. 535(1): 64.   https://doi.org/10.1080/15421406.2011.537941 

6. Ritter U., Scharff P., Grechnev G.E., Desnenko V.A., Fedorchenko A.V., Panfilov A.S., Prylutskyy Yu.I., Kolesnichenko Yu.A. Structure and magnetic properties of multi-walled carbon nanotubes modified with cobalt. Carbon. 2011. 49(13): 4443. https://doi.org/10.1016/j.carbon.2011.06.039 

7. Ritter U., Tsierkezos N.G., Prylutskyy Yu.I., Matzui L.Yu., Gubanov V.O., Bilyi M.M., Davydenko M.O. Structure-electrical resistivity relationship of N-doped multi-walled carbon nanotubes. J. Mater. Sci. 2012. 47(5): 2390.   https://doi.org/10.1007/s10853-011-6059-6  

8. Durkop T., Kim B.M., Fuhrer M.S. Properties and applications of high-mobility semiconducting nanotubes. Journal of Physics: Condensed Matter. 2004. 16: 553.  https://doi.org/10.1088/0953-8984/16/18/R01 

9. Kane C.L., Mele E.J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005. 95: 226801.  https://doi.org/10.1103/PhysRevLett.95.226801 

10. Mykhailenko O., Matsui D., Prylutskyy Yu., Normand F., Eklund P., Scharff P. Monte Carlo simulation of intercalated carbon nanotubes. J. Mol. Model. 2007. 13(1): 283.  https://doi.org/10.1007/s00894-006-0129-8 

11. Mykhailenko O.V., Prylutskyy Yu.I., Matsuy D.V., Strzhemechny Y.M., Le Normand F., Ritter U., Scharff P. Structure and thermal stability of Co- and Fe-intercalated double graphene layers. J. Comput. Theor. Nanosci. 2010. 7(6): 996.   https://doi.org/10.1166/jctn.2010.1444 

12. Grechnev G.E., Lyogenkaya A.A., Kolesnichenko Y.A., Prylutskyy Y.I., Hayn R. Electronic structure and magnetic properties of graphite intercalated with 3d-metals. Low Temp. Phys. 2014. 40(5): 580.   https://doi.org/10.1063/1.4876224 

13. Mykhailenko O.V., Prylutskyy Yu.I., Komarov I.V., Strungar A.V. "Host-Guest" Intercalate of Carbon Nanotube with Bis(η5-cyclopentadienyl)cobalt. In: II Ukrainian-Polish scientific conference «Membrane and Sorption processes and technologies» (December 2–4, 2015, Kyiv, Ukraine). P. 148.  

14. Rapaport D.C. The Art of Molecular Dynamics Simulation. (Cambridge, UK: Cambridge University Press, 1995). 

15. Tersoff J. Modelling Solid–State Chemistry: Interatomic Potentials for Multicomponent Systems. Phys. Rev. 1989. 39: 5566.  https://doi.org/10.1103/PhysRevB.39.5566 

16. Dorfman S., Mundim K.C., Fuks D., Berner A., Ellis D.E. Snapshot of an Electron orbital. Mater. Sci. Eng. 2001. 15: 191.  https://doi.org/10.1016/S0928-4931(01)00308-3 

17. Mykhailenko O.V., Prylutskyy Yu.I., Komarov I.V., Strungar A.V., Ritter U. «Guest-Host» Intercalate of Carbon Nanotube with Tricarbonyl(cyclopentadienyl)mangan. In: 3rd International research and practice conference «NANOTECHNOLOGY and NANOMATERIALS (NANO-2015)», (August 26–29, 2015, Lviv, Ukraine). P. 540.

18. Ionescu M.I., Zhang Y., Li R., Sun X., Abou-Rachid H., Lussier L-S. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies. Appl. Surf. Sci. 2011. 257(15): 6843.   https://doi.org/10.1016/j.apsusc.2011.03.011 

19. Mykhailenko O.V., Prylutskyy Y.I., Komarov I.V., Strungar A.V., Tsierkezos N.G. "Guest-host" intercalate of double-walled carbon nanotube with tricarbonyl(cyclopentadienyl)manganese. Materialwiss. Werkstofftech. 2016. 7(2–3): 203.   https://doi.org/10.1002/mawe.201600477 

20. Mykhailenko O.V., Prylutskyy Y.I., Komarov I.V., Strungar A.V. Thermodynamic Complexing of Monocyclopentadienylferrum (II) Intercalates with Double-Walled Carbon Nanotubes. Nanoscale Res. Lett. 2016. 11(1): 128.   https://doi.org/10.1186/s11671-016-1351-7




DOI: https://doi.org/10.15407/hftp07.03.330

Copyright (©) 2016 O. V. Mykhailenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.