Chemistry, Physics and Technology of Surface, 2016, 7 (3), 344-353.

The evaluation of biocompatibility and biological activity of composite materials with folate-derivative of ferrocene for medicine



DOI: https://doi.org/10.15407/hftp07.03.344

N. A. Galatenko, R. A. Roznova, L. V. Kulyk, D. V. Kulyesh

Abstract


Synthetic polymers are increasingly used in medical practice. Modification of polymers with biologically active substances, which can stimulate regenerative processes, is an urgent task. Conjugation of folic acid to ferrocene is resulted in a new compound, which may combine biological activity of folic acid and immune-boosting properties of ferrocene. The purpose of the study was to obtain polyurethane ureas with folate-derivative of ferrocene for medicine, research and assessment of their biocompatibility and biological activity. Toxicological, biochemical and histological studies were undertaken. It has been shown that folate-derivative of ferrocene entered to the tissue culture activates cellular elements of fibroblastic and macrophage rows. Folate-derivative of ferrocene entered to polymer material during implantation into the body of experimental animals stimulated monocyte-macrophage elements at the early stages and formation occurred of the fibrous capsule around the implant. Cellular reactions around the implanted polymeric samples were typical for aseptic inflammation and did not lead to the development of acute and chronic inflammation. Consequently, obtained polymeric materials with folate-derivative of ferrocene may be recommend for clinical trials.

Keywords


polyurethane urea; folate-derivative of ferrocene; biological activity; biocompatibility

Full Text:

PDF (Українська)

References


1. Hodorenko V.N., Yasenchyk Yu.F., Gunter V.E. Biocompatible porous permeable materials. Biocompatible Materials and Implants with Shape Memory (Tomsk: Northempton, 2001): 9–24.

2. Medvedev A.Yu. PhD (Med.) Comparative evaluation of the use of polypropylene and polytetrafluoroethylene implants with the planned elimination of inguinal hernias (Tver, 2009). [in Russian].

3. Galatenko N.A., Rozhnova R.A. Biologically active polymeric materials for medicine. (Kyiv: Naukova dumka, 2013). [in Russian].

4. Lipatova T.E., Pchakadze G.A. Polymers in arthroplasty. (Kyiv: Naukova dumka, 1983). [in Russian].

5. Pchakadze G.A. Biodegradable polymers. (Kyiv: Naukova dumka, 1990). [in Russian].

6. Kulyesh D.V., Tkach O.S., Demchenko I.B., Kebuladze I.M. Development and study of properties of polyurethane adhesives with folic acid as implantation material. Plastic reconstructive and aesthetic surgery. 2012. 1: 56. [in Ukrainian].

7. Loginova I.S. PhD (Med.) Experimental research of regenerative processes in the jawbone defects using osteoplastic Gapkol material hyaluronic acid and chondroitin sulfate (Moscow, 2005). [in Russian].

8. Nesmeyanov A.N. Ferrocene and related compounds. (Moscow: Nauka, 1982). [in Russian].

9. Kovjazin R., Eldar T., Patya M., Vanichkin A., Lander H.M., Novogrodsky A. Ferrocene-induced lymphocyte activation and anti-tumor activity is mediated by redox-sensitive signaling. FASEB J. 2003. 17(3): 467.

10. Min-Hua Chen, Chung-King Hsu, Feng-Huei Lin, Stobinski L., Peszke J. Folic acid immobilized ferrimagnetic DP-bioglass to target tumor cell for cancer hyperthermia treatment. Advances in Science and Technology. 2006. 53: 50.   https://doi.org/10.4028/www.scientific.net/AST.53.50  

11. Zhang J., Rana S., Srivastava R.S., Misra R.D.K. On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomat. 2008. 4: 40.  https://doi.org/10.1016/j.actbio.2007.06.006   

12. Gubskij Yu.I. Biological chemistry. (Kyiv: Nova knyga, 2009). [in Ukrainian].

13. Makeieva L., Gladyr I., Rozhnova R., Galatenko N. Syntesis of bioactive folate-ferrocene conjugate. Chemistry and Chemical Technology. 2014. 8(4): 395.

14. Reeves P.C. Carboxylation of aromatic compounds: ferrocenecarboxylic acid. Org. synth. 1988. 6: 625.

15. Mamedov L.A., Nikolaev A.V., Zaharov V.V. Phosphatase activity of white blood cells and wound exudate in the healing of aseptic wounds in the experiment. Bull. exper. biology and medicine. 1987. 104 (9): 306.

16. Salthouse T. N. Cellular enzyme activity at the polymer–tissue interface. Biomed. Mater. Res. 1976. 10(2): 197. https://doi.org/10.1002/jbm.820100204  

17. Pchakadze G.A., Tereshenko T.L., Yatsenko V.P. Comparative evaluation phosphomonoesterase activity as a test for determining the biocompatibility of polymer alloimplants. Doklady AN USSR. Ser. B. 1982. 6 : 71.

18. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. (Strasbourg: Council of Europe, 1986).

19. Lebedev E.V., Konstantinov Yu.B., Galatenko N.A. Toxicological-hygienic and clinical trials of polymer materials and products based on them for medical appointment. Guidance. (Kyiv, 2009). [in Ukrainian].

20. Bessey O.A., Lowry O.H., Brock M.J. A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum. J. Biol. Chem. 1946. 164(7): 321.

21. Ilnitskiy A.P. Some questions of tissue culture in toxicological experiment. Hygienic evaluation of chemical environmental factors. (Moscow, 1966). [in Russian].

22. Wemborg A., Hasselgren G., Tronstad L. A method for toxicity screening of biomaterials using cells cultured on Millipore filters. J. Biomed. Mater. Res. 1979. 13(1): 109.   https://doi.org/10.1002/jbm.820130112

23. Ekwall B. Screening of toxic compounds in tissue culture. Toxicology. 1969. 17(12): 127.

24. Galatenko N.A., Kulyesh D.V., Pinchyk V.D., Narozhajko L.F., Karpik E.N. Study on histo toxicity and biocompatibility of silicone endoprosthesis by tissue culture method and by implantation test. Dopovidi NANU. 2011. 1: 135. [in Ukrainian].

25. Kulyesh D.V., Zlenko A.B., Demchenko I.B., Galatenko N.A. Analysis of proficiency testing of hydrophilic gel «Aquafilling». Dopovidi NANU . 2012. 7:153.

26. Galatenko N.A., Kebuladze I.M., Narozhajko L.F. Study of biocompatibility of a new polyacrylamide gel «Rinaplast». Plastic reconstructive and aesthetic surgery. 2009. 2(13): 49. [in Russian].

27. Moynard I.R., Heckman C.A., Pitlick N.A., Nemerson Y. Assotiation of tissue factor activity with the surface of cultured cells. J. Clin. Invest. 1975. 55(4): 814.   https://doi.org/10.1172/JCI107992

28. Sisca R. L. Responses of epithelial–like cells in tissue culture to implant materials. Journal of Dental Research. 1967. 46: 248. https://doi.org/10.1177/00220345670460011901

29. Imshenetskij A.A., Kasatki I.D., Solntseva L.I. Application of tissue culture method to determine the toxicity of fibrinolytic drugs. Izv. AN SSSR. 1977. 4: 36.

30. Rena S.D., Hyghes R.S. Fibronectin-plasmamembrane interactions in the adhesion and speeding of hamster fibroblasts. Nature. 1978. 276(5683): 70.

31. Freshni R. Animal Cell Culture. Methods. (Moscow: Mir, 1989). [in Russian].

32. Zalkind R.Ya., Yurskaya G.B. Problems of determination and differentiation of cultured cells in vitro. Uspechi sovremen. biol. (Successes of modern biology). 1970. 4: 85. [in Russian].

33. Galatenko N.A., Yatsenko V.P., Pchakadze G.A. Determination of the cytotoxicity of polymers for medical purposes with the use of tissue culture. Doklady AN USSR. 1982. 9: 54. [in Russian].

34. Yatsenko V.P., Galatenko N.A., Pchakadze G.A. The method of quantitative study of fibroblastic cells growth in tissue culture. Cytology and Genetics. 1984. 4: 280. [in Ukrainian].

35. Sarkisov D.S., Petrova Yu.L. Microscopic technique. (Moscow: Medicine, 1996). [in Russian]. 




DOI: https://doi.org/10.15407/hftp07.03.344

Copyright (©) 2016 N. A. Galatenko, R. A. Roznova, L. V. Kulyk, D. V. Kulyesh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.