Chemistry, Physics and Technology of Surface, 2016, 7 (3), 354-360.

Influence of dispersed copper iodide on the enzymatic activity of the yeast cells Saccharomyces cerevisiae



DOI: https://doi.org/10.15407/hftp07.03.354

G. M. Bagatska, R. V. Mazurenko, S. M. Makhno, P. P. Gorbyk

Abstract


The study detected the influence of copper iodide particles (CuI) in an aqueous suspension of yeast cells of Saccharomyces cerevisiae on intensifying the process of fermentation under conditions of endogenous metabolism by the method of differential microcalorimetry. The power of heat release suspensions was recorded after transfer of yeast cells from dehydrated state into hydration one and then - into a state of life activity. The research of endogenous cell metabolism was performed in tap water. The size of dispersed particles of copper iodide was of 2–4 microns. Increased energy metabolism of cells of Saccharomyces cerevisiae is observed at content of 2% copper iodide and can be explained by the phenomenon of hormesis. Moreover, discovered violations of regularity of thermal process, at the mass content CuI from 2% to 8% in yeast suspensions, appears between the stages of hydration and metabolism, due to reserve carbohydrates, stage of activation of protective mechanisms of the system due to launch of adaptive functions, of cells - activated expression of stress genes. Maximum display of defensive functions of yeast was found at concentration of copper iodide ~6%, accompanied by a significant reduction in energy of this process and metabolism with further increase in CuI content. Аfter reaching a "critical" concentration of copper iodide (C ≈ 7–8%) in the yeast suspensions, a significant reduction was observed in energy of metabolism and protective functions of cell yeasts, manifested in violation of the regularity of the thermal process, restructuring of plasmolemma.

Keywords


yeast cells; microcalorimetry; fermentation; copper iodide

Full Text:

PDF (Українська)

References


1. Biogeotechnology of metall.  Ed. G.I Karavaiko, George Rossi, A.A. Agate et al. (Moscow: CIP SCCT, 1989). [in Russian].

2. Ulberh Z.R., Gruzina T.G., Karpov A.I. Nanotechnology in medicine: the role of colloid-chemical processes. Herald of the National Academy of Sciences of Ukraine. 2008. (8): 28.

3. de Villiers M., Aramwift P., Kwon G.S. Nanotechnology in drug delivery. (Springer, 2008).

4. Mandal D., Bolander M., Mukhopadhyay D., Sarkar G., Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 2006. 69(5): 485. https://doi.org/10.1007/s00253-005-0179-3  

5. Kathiresan K., Manivannan S., Nabeel M., Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid. Surf. B. 2009. 71(1): 133. https://doi.org/10.1016/j.colsurfb.2009.01.016  

6. Estrela V.R., Borodinova T.I., Jurkova I.N. The extracellular biomineralization and the synthesis of nano- and micro-crystallites of gold and platinum in aqueous solutions of polysaccharides. Colloid-chemical basis of nanoscience. Ed. A.P. Shpak, Z.R. Ullberg. (Kiev: Academperiodika, 2005). [in Russian].

7. Tazhibaeva S.M., Musabekov K.B., Orazymbetov A.B., Zhubanov A.A. Surface properties of yeast cells. Colloid zhurnal. 2003. 65(1): 132. [in Russian].

8. Ullberg Z.R., Vashchenko A.A. Biocolloidal chemistry bioflotatione extract and colloidal gold nanoparticles from solutions and dispersions of mineral. Nanosystems, nanomaterials, nanotechnology. 2008. 6(2): 331. [in Ukrainian].

9. Sanagursky D.I. Objects of biophysics. (Lviv National University: Publishing center of Franko, 2008). [in Ukrainian].

10. Ullberg Z.R., Gruzina T.G., Duhin A.S. Colloidal biochemical mechanism of interaction of cells with micro and nanoparticles. Nanosystems, nanomaterials, nanotechnology. 2014. 12(3): 417. [in Russian].

11. Abrat O.B., Semchishin G.M., Lushchak V.I. Acid stress in the yeast Saccharomyces cerevisiae. Ukrainian Biochemical Journal. 2008. 80(6): 19. [in Ukrainian].

12. Goryachaya I.P., Zinchenko V.D., Buriak I.A. Stability of Saccharomyces cerevisiae yeast membranes to cold exposure under oxidative stress. Scientific Gazette. Series Natural Sciences. 2014. 26(3): 72. [in Russian].

13. Podolsky V.I., Voitenko E.J., Yakubenko L.N., Ullberg Z.R., Zdanowicz E.A., Yermakov V.N., Kirichenko N.I. Effect of weak pulsed electric field on the interaction of certain microorganisms with ions of silver and copper. Nanostructurnoye materialovedenie. 2010. (2): 64. [in Russian].

14. Prokopenko V.A., Kovzun I.G., Ullberg Z.R. The creative potential of scientific discovery. Visn. NAS Ukraine. 2014. (10): 52. [in Russian].

15. Alt V., Bechert Th., Steinrucke P., Wagener M., Seidel P., Dingeldein E., Domann E., Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004. 25(18): 4383. https://doi.org/10.1016/j.biomaterials.2003.10.078

16. Shionoiri N., Sato T., Fujimori Y., Nakayama T., Nemoto M., Matsunaga T., Tanaka T. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. Journal of Bioscience and Bioengineering. 2012. 113(5): 580.  https://doi.org/10.1016/j.jbiosc.2011.12.006

17. Fujimori Y., Sato T., Hayata T., Nagao T., Nakayama M., Nakayama T., Sugamata R., Suzuki K. Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl. Env. Microbiol. 2012. 78(4): 951. https://doi.org/10.1128/AEM.06284-11

18. Garkusha O.M., Makhno S.M., Bagatskaya A.N., Gorbyk P.P. Thermal effects during the immersion wetting of silica gel and the yeast cells during the formation of aqueous suspensions. Koloidn. zhurn. 2010. 72(3): 323. [in Russian].

19. Calabrese E.J. Hormesis: principles and applications for pharmacology and toxicology. Am. J. Pharm. Toxicol. 2008. 3(1): 56. https://doi.org/10.3844/ajptsp.2008.59.71

20. Erkina T.Y., Lavrova M.V., Erkin A.M. Alternative ways of regulation of stress in the cells of Saccharomyces cerevisiae: transcriptional activators and MSN2 MSN4. Tsitologiya. 2009. 51(3): 271. [in Russian].  https://doi.org/10.1134/s1990519x09020035

21. Mathers J., Fraser J.A, McMahon M., Saunders R.D., Hayes J.D., McLellan L.I. Antioxidant and cytoprotective responses to redox stress. Biochem. Soc. Symp. 2004. 71(1): 157.  https://doi.org/10.1042/bss0710157 




DOI: https://doi.org/10.15407/hftp07.03.354

Copyright (©) 2016 G. M. Bagatska, R. V. Mazurenko, S. M. Makhno, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.