Chemistry, Physics and Technology of Surface, 2016, 7 (4), 379-388.

Zn-Al layered double hydroxides for adsorption and photocatalytic removal of с ationic dye



DOI: https://doi.org/10.15407/hftp07.04.379

G. M. Starukh

Abstract


The removal of hazardous substances from wastewater is a major problem in the world. The advantages of application of Zn-Al layered double hydroxides (LDHs) and their derivatives for removal of organic contaminants consist in the combination of high adsorption capacity of LDHs and the presence of a photoactive component. Therefore, the present paper focuses on study of the adsorption and photocatalytic capabilities of Zn-Al LDHs to remove cationic dye methylene blue (MB) from aqueous solutions. Zn-Al LDHs with Zn:Al ratio 2 were synthesized by coprecipitation method. Zn-Al LDHs were characterized by XRD, thermogravimetric and spectroscopy analysis. The reconstruction of calcined  Zn-Al LDHs in sodium dodecyl sulfate (SDS) solutions in the range of concentrations from 0.012 mol·L–1 to 0.205 mol·L–1 was performed to obtain organo/Zn-Al LDHs. The partial SDS intercalation was clearly evidenced by the appearance of a peak at low 2θ values. SDS-modified LDHs demonstrate the high adsorption capacity to MB. About 90 % of dye was adsorbed with organo/Zn-Al LDHs from 2×10-4 mol·L–1 MB solution. The study on optical properties of calcined and reconstructed Zn-Al LDHs has detected the presence of ZnO that makes possible the using of Zn-Al LDHs as photocatalysts. About 50 % of dye was destructed by irradiation of MB solution in the presence of Zn-Al LDHs from   2×10-5 mol·L–1 MB solution in the presence of calcined at 450 °C Zn-Al LDHs. It has been found that the most complete removal of the dye from highly concentrated solutions is achieved by MB adsorption with organo/Zn-Al LDH. The investigation of the irradiation influence on the optical spectra of MB adsorbed on the surface of organo/Zn-Al LDH is needed to clarify the photocatalytic activity of ZnO-contained organo/Zn-Al LDH. The high adsorption capacity of organo/Zn-Al LDHs and the ease of both synthesis and separation processes rendered this adsorbent to be a promising candidate for environmental remediation.

Keywords


layered double hydroxides; organo/inorganic nanocomposites; intercalated surfactants; cationic dye adsorption; photocatalytic destruction; wastewater treatment

Full Text:

PDF

References


1. Jiuhui Q.U. Research progress of novel adsorption processes in water purification: A review. J. Environ. Sci. 2008. 20(1):1. https://doi.org/10.1016/S1001-0742(08)60001-7 

2. Grover K, Komarneni S, Katsuki H. Uptake of arsenite by synthetic layered double hydroxides. Water Res. 2009. 43(15): 3884. https://doi.org/10.1016/j.watres.2009.06.003 

3. Zümreoglu-Karan B., Ay A.N. Layered double hydroxides – multifunctional nanomaterials. Chemical Papers. 2012. 66(1): 1. https://doi.org/10.2478/s11696-011-0100-8 

4. Cavani F., Trifirò F., Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today. 1991. 11(2): 173. https://doi.org/10.1016/0920-5861(91)80068-K 

5. Chuang Y.H., Liu C.H., Tzou Y.M., Chang J.C., Chiang P.N., Wang M.-K. Comparison and characterization of chemical surfactants and bio-surfactants intercalated with layered double hydroxides (LDHs) for removing naphthalene from contaminated aqueous solutions. Colloids Surf., A. 2010. 366(1–3): 170. https://doi.org/10.1016/j.colsurfa.2010.06.009 

6. Bruna F, Celis R, Real M, Cornejo J. Organo/LDH nanocomposite as an adsorbent of polycyclic aromatic hydrocarbons in water and soil–water systems. J. Hazard. Mater. 2012. 225–226:74. https://doi.org/10.1016/j.jhazmat.2012.04.064 

7. Starukh G., Rozovik O., Oranska O. Organo/Zn-Al LDH nanocomposites for cationic dye removal from aqueous media. Nanoscale Res. Letts. 2016. 11(1): 228. https://doi.org/10.1186/s11671-016-1402-0 

8. Xu S, Ng J., Zhang X., Bai H., Sun D. Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube. Colloids Surf., A. 2011. 379(1–3): 169. https://doi.org/10.1016/j.colsurfa.2010.11.032 

9. Boumaza S.S, Kaouah F., Omeiri S., Trari. M., Bendjama Z. Removal of dyes by an integrated process coupling adsorption and photocatalysis in batch mode. Res. Chem. Intermed. 2015. 41(4): 2353. https://doi.org/10.1007/s11164-013-1351-5 

10. Alanis C., Natividada R., Barrera-Diaz C., Martínez-Mirandab V., Prince J., Valente J. Photocatalytically enhanced Cr(VI) removal by mixed oxides derived from MeAl (Me:Mg and/or Zn) layered double hydroxides. Appl. Catal., B. 2013. 140–141: 546. https://doi.org/10.1016/j.apcatb.2013.04.053 

11. Patzk’o A., Kun R., Hornok V., D’ek’any I., Engelhardt T., Schall N. ZnAl-layered double hydroxides as photocatalysts for oxidation of phenol in aqueous solution. Colloids Surf., A. 2005. 265(1–3): 64. https://doi.org/10.1016/j.colsurfa.2005.01.039 

12. Seftel E., Popovici E., Mertens M., De W., Tendeloo G., Cool P., Vansant E. Zn–Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater. 2008. 113(1–3): 296. https://doi.org/10.1016/j.micromeso.2007.11.029 

13. Silva C. G., Bouizi Y., Forne’s V., Garcı’a H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Am. Chem. Soc. 2009. 131(38): 13833. https://doi.org/10.1021/ja905467v 

14. Valente J.S., Tzompantzi F., Prince J., Cortez J.G.H., Gomez R. Adsorption and photocatalytic degradation of phenol and 2, 4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides. Appl. Catal. B. 2009. 90(3–4): 330. https://doi.org/10.1016/j.apcatb.2009.03.019 

15. Kooli F., Depege C., Ennaqadi A., de Roy A., Besse J.P. Rehydration of Zn-Al Layered Double Hydroxides. Clays Clay Miner. 1991. 45(1): 92. https://doi.org/10.1346/CCMN.1997.0450111 

16. Chaara D., Bruna F., Ulibarri M.A., Draoui K., Barriga C., Pavlovic I. Organo/layered double hydroxide nanohybrids used to remove non ionic pesticides. J. Hazard. Mater. 2011. 196: 350. https://doi.org/10.1016/j.jhazmat.2011.09.034 

17. Xiong Z, Xu Y. Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2, 4, 6-trichlorophenol under visible light irradiation. Chem. Mater. 2007. 19(6): 1452. https://doi.org/10.1021/cm062437x 

18. Voyer N., Soisnard A., Palmer S.J., Martens W., Frost R.L. Thermal decomposition of the layered double hydroxides of formula Cu6Al2(OH)16CO3 and Zn6Al2(OH)16CO3. J. Therm. Anal. Cal. 2009. 96(2): 481. https://doi.org/10.1007/s10973-008-9169-x 

19. Benito P., Guinea I., Labajos F.M., Rocha J., Rives V. Microwave-hydrothermally aged Zn,Al hydrotalcite-like compounds: Influence of the composition and the irradiation conditions. Microporous Mesoporous Mater. 2008. 110(2–3): 292. https://doi.org/10.1016/j.micromeso.2007.06.013 

20. Leroux F., Pagano M.A., Intissar M., Chauviere S., Rorano C., Besse J.-P. Delamination and restacking of layered double hydroxides. J. Mater. Chem. 2001. 11: 105. https://doi.org/10.1039/b002955f 

21. Clearfield A., Kieke M., Kwan J., Colon J.L., Wang R.C. Intercalation of dodecyl sulfate into layered double hydroxides. J. Inclusion Phenom. Mol. Recogn. Chem. 1991. 11(4): 361. https://doi.org/10.1007/BF01041414 

22. Zhang P., Shi H.S., Ruan X.X., Qian G.R., Frost R. Na-dodecylsulfate modification of hydrocalumite and subsequent effect on the structure and thermal decomposition. J. Therm. Anal. Calorim. 2011. 104(2): 743. https://doi.org/10.1007/s10973-010-1001-8 

23. Janotti A., Van de Walle C. G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009. 72(12): 126501. https://doi.org/10.1088/0034-4885/72/12/126501 

24. Aguiar J.E., Bezerra B.T., Braga B.M., Lima P.D., Nogueira R.E., Lucena S.M., Silva I.J. Adsorption of anionic and cationic dyes from aqueous solution on non-calcined Mg-Al layered double hydroxide: Experimental and theoretical study. Sep. Sci. Technol. 2013. 48(15): 2307. https://doi.org/10.1080/01496395.2013.804837 




DOI: https://doi.org/10.15407/hftp07.04.379

Copyright (©) 2016 G. M. Starukh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.