Chemistry, Physics and Technology of Surface, 2016, 7 (4), 413-420.

Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites



DOI: https://doi.org/10.15407/hftp07.04.413

L. V. Karabanova, L. A. Honcharova, V. I. Sapsay, D. O. Klymchuk

Abstract


A series of nanocomposites based on polyurethane matrix (PU) have been synthesized using 1,2-propanediolisobutyl polyhedral oligomeric silsesquioxanes (POSS) as functionalized nanofiller. The effect of POSS content (0–10% by weight) on the structure and properties of the created nanocomposites have been investigated. The polymer matrix (PU network) was synthesized from adduct of  trimethylolpropane (TMP) and toluene 2,4-diisocyanate (TDI), and oligoetherglycol with Mw = 5000 g/mol-1. FTIR analysis was used for investigation of 1,2-propanediolisobutyl-POSS incorporation possibility into PU matrix. The FTIR spectra of neat POSS, neat TDI-TMP adduct and model system adduct+POSS before curing and after curing were analyzed. The FTIR-ATR data obtained evidence that the POSS structure is chemically incorporated into the PU matrix during process of nanocomposites preparation. The thermal behaviour of POSS-containing nanocomposites by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) was investigated. From the DSC data the glass transition temperature (Tg) of the nanocomposites was found to be increased with increasing of POSS content. Overall the results of thermal properties investigation of POSS-containing nanocomposites demonstrate that the created nanocomposites are significantly more thermally stable in compare with native matrix. The morphology of POSS-containing nanocomposites by SEM was analyzed. The incorporation of the POSS nanoparticles into PU matrix was found results in the formation of more ordered structure. Consequently the POSS introduced into PU matrix acts as nanostructuring agent. As a result the nanocomposites with more ordered structure are formed, so leading to obtaining of materials with improved thermal stability.

Keywords


polyurethane; polyhedral oligomeric silsesquioxanes; nanocomposite; morphology; Fourier transform infrared spectroscopy; differential scanning calorimetry; thermogravimetric analysis

Full Text:

PDF

References


1. Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003. 28(11): 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002 

2. Shaffer M.S.P., Sandler J.K.W. Processing and properties of nanocomposites. In: Carbon Nanotube/Nanofibre Polymer Composites. (Singapore: World Scientific, 2006).

3. Bershtein V.A., Gun'ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv. 2013. 3: 14560. https://doi.org/10.1039/c3ra40295a 

4. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. J. Pol. Sci. 2008. B 46(16): 1696.

5. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006. 39(16): 5194. https://doi.org/10.1021/ma060733p 

6. Wolinska-Grabczyk A., Jankowski A. Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Sep. Purif. Technol. 2007. 57(3): 413. https://doi.org/10.1016/j.seppur.2006.03.025 

7. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polymer Journal. 2007. 29(3): 177. [in Russian].

8. Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci. 2013. 291(3): 573. https://doi.org/10.1007/s00396-012-2745-4 

9. Karabanova L.V., Whitby R.L., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Compos. Sci. Technol. 2012. 72(8): 865. https://doi.org/10.1016/j.compscitech.2012.02.008 

10. Madhavan K., Reddy B.S.R. Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J. Membr. Sci. 2009. 342(1–2): 291. https://doi.org/10.1016/j.memsci.2009.07.002 

11. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polymer Journal. 2009. 31(2): 137. [in Ukrainian].

12. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym. 2012. 72(4): 227. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001 

13. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab. 2014. 104: 50. https://doi.org/10.1016/j.polymdegradstab.2014.03.025 

14. Wei K, Wang L, Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem. 2013. 4:1491. https://doi.org/10.1039/C2PY20930F 

15. Bourbigot S., Turf T., Bellayer S., Duquesne S. (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab. 2009. 94:1230. https://doi.org/10.1016/j.polymdegradstab.2009.04.016 

16. Huang J., Jiang P., Li X., Huang Y. Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J. Mater. Sci. 2016. 51(5): 2443. https://doi.org/10.1007/s10853-015-9557-0 

17. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer. 2009. 50(24): 5749. https://doi.org/10.1016/j.polymer.2009.05.037 

18. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater. Chem. Phys. 2009. 117(1): 91. https://doi.org/10.1016/j.matchemphys.2009.05.006 

19. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P. T. Thermally modulated nanostructure of poly(ε-caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer. 2013. 54(13): 3350. https://doi.org/10.1016/j.polymer.2013.04.015 

20. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym. Int. 2004. 53(12): 2051. https://doi.org/10.1002/pi.1627 

21. Wamke A., Dopierała R., Prochaska K., Maciejewski H., Biadasz A., Dudkowiak A. Characterization of Langmuir monolayer, Langmuir–Blodgett and Langmuir–Schaefer films formed by POSS compounds. Colloids Surf. A. 2015. 464: 110. https://doi.org/10.1016/j.colsurfa.2014.10.022 

22. Jerman I., Kozelj M., Orel B. The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Solar Energy Materials & Solar Cells. 2010. 94(2): 232; https://doi.org/10.1016/j.solmat.2009.09.008 

23. Jerman I., Mihelcic M., Verhovsek D., Kovac J., Orel B. Polyhedral oligomeric silsesquioxane trisilanols as pigment surface modifiers for fluoropolymer based Thickness Sensitive Spectrally Selective (TSSS) paint coatings. Solar Energy Materials & Solar Cells. 2011. 95(2): 423. https://doi.org/10.1016/j.solmat.2010.08.005 

24. Kraus-Ophir S., Jerman I., Orel B., Mandler D. Symmetrical thiol functionalized polyhedral oligomeric silsesquioxanes as building blocks for LB films. Soft Matter. 2011. 7: 8862. https://doi.org/10.1039/c1sm05443k 

25. Dittmar U., Hendan B.J., Florke U., Marsmann H.C. Funktionalisierte Octa-(propylsilsesquioxane) (3-XC3H6)8(Si8O12) Modellverbindungen für oberflächenmodifizierte Kieselgele. J. Organomet. Chem. 1995. 489(1–2): 185.https://doi.org/10.1016/0022-328X(94)05100-P 

26. Bärtsch M., Bornhauser P., Calzaferri G., Imhof R., H8Si8O12: A model for the vibrational structure of zeolite A. J. Phys.Chem. 1994. 98(11): 2817.https://doi.org/10.1021/j100062a016 

27. Xue M., Zhang X., Wu Z., Wang H., Ding X., Tian X. Preparation and flame retardancy of polyurethane/POSS nanocomposites. Chin. J. Chem. Phys. 2013. 26(4): 445.https://doi.org/10.1063/1674-0068/26/04/445-450 

28. Maoz R., Sagiv, Degenhardt J.D., Mohwald H., Quint P. Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infra-red spectroscopy and X-ray scattering techniques. Supramol. Sci. 1995. 2(1): 9.https://doi.org/10.1016/0968-5677(96)85635-5 

29. Bellamy L.J. The infrared spectra of complex molecules. V. 2. Advances in infrared group frequencies. (London: Methuen, 1980).

30. Moon J.H., Seo J.S., Xu.Y., Yang S. Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 2009. 19(27): 4687.https://doi.org/10.1039/b901226e 

31. Smetankina N.P., Angelova A.V., Lukas S.D. Polyurethane coatings based on polyoxypropylene glycols. Synthesis and physical chemistry of polyurethanes. 1967. 5: 49. [in Russian].

32. Zhang S., Zou Q., Wu L. Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromol. Mater. Eng. 2006. 291(7): 895.https://doi.org/10.1002/mame.200600144




DOI: https://doi.org/10.15407/hftp07.04.413

Copyright (©) 2016 L. V. Karabanova, L. A. Honcharova, V. I. Sapsay, D. O. Klymchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.