β-cyclodextrin-MCM-41 silica as promising adsorbent for the trace amounts removal of aromatics from water
DOI: https://doi.org/10.15407/hftp07.04.421
Abstract
Keywords
References
1. Busca G., Berardinelli S., Resini C., Arrighi L. Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater. 2008. 160(2–3): 265. https://doi.org/10.1016/j.jhazmat.2008.03.045
2. Kuykendall J.R. Benzene. Encyclopedia of Ecology. Reference Module in Earth Systems and Environmental Sciences. (Amsterdam: Elsevier, 2008).
3. Stewart A.J., Stewart R.F. Phenols. Encyclopedia of Ecology. Reference Module in Earth Systems and Environmental Sciences. (Amsterdam: Elsevier, 2008).
4. Hindarso H., Ismadij S., Wicaksana F., Indraswati N. Adsorption of benzene and toluene from aqueous solution onto granular activated carbon. J. Chem. Eng. Data. 2001. 46(4):788. https://doi.org/10.1021/je000176g
5. Roostaei N., Tezel F.H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manage. 2004. 70(2):157. https://doi.org/10.1016/j.jenvman.2003.11.004
6. Dabrowski A., Podkościelny P., Hubicki Z., Barczak M. Adsorption of phenolic compounds by activated carbon – a critical review. Chemosphere. 2005. 58(8): 1049. https://doi.org/10.1016/j.chemosphere.2004.09.067
7. Koh S.M., Dixon J.B. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Appl. Clay Sci. 2001. 18(3–4): 111. https://doi.org/10.1016/S0169-1317(00)00040-5
8. Kuleyin A. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. J. Hazard. Mater. 2007. 144(1–2): 307. https://doi.org/10.1016/j.jhazmat.2006.10.036
9. Fu J., He Q., Wang R., Liu B., Hu B. Comparative study of phenol compounds adsorption on mesoporous sieves with different degrees of modification. Colloids Surf., A. 2011. 375(1–3): 136. https://doi.org/10.1016/j.colsurfa.2010.11.078
10. Wang X., Lu M., Wang H., Pei Y., Rao H., Du X. Three-dimensional graphene aerogels–mesoporous silica frameworks for superior adsorption capability of phenols. Sep. Purif. Technol. 2015. 153: 7. https://doi.org/10.1016/j.seppur.2015.08.030
11. Li A., Zhang Q., Wu H., Zhai Z., Liu F., Fei Z., Long Ch., Zhu Z, Chen J. A new amine-modified hypercrosslinked polymeric adsorbent for removing phenolic compounds from aqueous solutions. Adsorpt. Sci. Technol. 2004. 22: 807. https://doi.org/10.1260/0263617053499005
12. Lin S.H., Juang R.S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage. 2009. 90(3): 1336. https://doi.org/10.1016/j.jenvman.2008.09.003
13. Choi J.W., Chung S.G., Baek K.Y., Cho K.Y., Hong S.W., Kim D.J., Lee S.H. Removal of benzene using the characteristics of block copolymers for encapsulation. Water Air Soil Pollut. 2012. 223(2): 609. https://doi.org/10.1007/s11270-011-0886-6
14. Laros S., Meniai A.H. The use of sawdust as by product adsorbent of organic pollutant from wastewater adsorption of phenol. Energy Procedia. 2012. 18: 905. https://doi.org/10.1016/j.egypro.2012.05.105
15. Abdel-Ghani N.T., El-Ghaghaby G.A., Helal F.S. Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust. Global J. Environ. Sci. Manage. 2016. 2(3): 209.
16. Banerjee A., Ghoshal A.K. Biodegradation of phenol by calcium-alginate immobilized Bacillus cereus in a packed bed reactor and determination of the mass transfer correlation. J. Environ. Chem. Eng. 2016. 4(2):1523. https://doi.org/10.1016/j.jece.2016.02.012
17. Wu C., Lui X., Wei D., Fan I., Wang L. Photosonochemical degradation of phenol in water. Water Res. 2001. 35(16): 3927. https://doi.org/10.1016/S0043-1354(01)00133-6
18. Jandacek R.J., Bohne R.L. The removal of organic substances from water with nonvolatile edible solvents. J. Am. Oil Chem. Soc. 1980. 57(9): 705A. https://doi.org/10.1007/BF02662203
19. Weschayanwiwat P., Kunanupap O., Scamehorn J.E. Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures. Chemosphere. 2008. 72(7): 1043. https://doi.org/10.1016/j.chemosphere.2008.03.065
20. Wu J., Rudy K., Spark J. Oxidation of aqueous phenol by ozone or peroxidase. Adv. Environ. Res. 2000. 4(4): 339. https://doi.org/10.1016/S1093-0191(00)00034-4
21. Mixa A., Staudt C. Membrane-based separation of phenol/water mixtures using ionically and covalently cross-linked ethylene-methacrylic acid copolymers. Int. J. Chem. Eng. 2008. 2008: 12.
22. Lefebvre E., Legube B. Coagulation-flocculation by ferric chloride of some organic compounds in aqueous solution. Water Res. 1993. 27: 433. https://doi.org/10.1016/0043-1354(93)90044-I
23. Del Valle E.M. Cyclodextrins and their uses: a review. Process. Biochem. 2004. 39(9): 1033. https://doi.org/10.1016/S0032-9592(03)00258-9
24. Roik N.V., Belyakova L.A. Sol-gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface. J. Solid State Chem. 2013. 207: 194. https://doi.org/10.1016/j.jssc.2013.09.027
25. Roik N.V., Belyakova L.A. Interaction of supramolecular centers of silica surface with aromatic amino acids. J. Colloid Interf. Sci. 2011. 362(1): 172. https://doi.org/10.1016/j.jcis.2011.05.085
26. Hsieh M.L., Li G.Y., Chau L.K., Hon Ys. Single-step approach to β-cyclodextrin-bonded silica as monolithic stationary phases for CEC. J. Sep. Sci. 2008. 31(10): 1819. https://doi.org/10.1002/jssc.200700631
27. Eguchi M., Du Y.Z., Taira S., Kodaka M. Functional nanoparticles based on β-cyclodextrin: preparation and properties. Nanobiothechnology. 2005. 1: 165. https://doi.org/10.1385/NBT:1:2:165
28. Belyakova L.A., Vlasova N.N., Golovkova L.P., Varvarin A.M., Lyashenko D.Yu., Svezhentsova A.A., Stukalina N.G., Chuiko A.A. Role of surface nature of functional silicas in adsorption of monocarboxylic and bile acids. J. Colloid Interf. Sci. 2003. 258(1): 1. https://doi.org/10.1016/S0021-9797(02)00093-0
29. Korenman I.M. Photometric analysis. Methods of determination of organic compounds. (Moscow: Khimia, 1970). [in Russian].
30. Nakanishi K. Infrared absorption spectroscopy, practical. (San Francisco: Holden Day, 1962).
31. Huq R., Mercier L., Kooyman P.J. Incorporation of cyclodextrin into mesostructured silica. Chem. Mater. 2001. 13(12): 4512. https://doi.org/10.1021/cm010171i
32. Lewis E.A., Hansen L.D. Thermodynamics of binding of guest molecules to α- and β-cyclodextrins. J. Chem. Soc., Perkin Trans. 1973. 2: 2081. https://doi.org/10.1039/P29730002081
33. Trofymchuk I.M., Belyakova L.A., Grebenyuk A.G. Study of complex formation between β-cyclodextrin and benzene. J. Incl. Phenom. Macro. 2011. 69(3): 371. https://doi.org/10.1007/s10847-010-9757-9
34. Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity. (London: Academic press, 1982).
35. Giles C.H., MacEwan T.H., Nahwa S.N., Smith D. 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960. 69: 3973. https://doi.org/10.1039/jr9600003973
36. Asenjo N.G., Alvarez P., Granda M., Blanco C., Santamaria R., Mendez R. High performance activated carbon for benzene/toluene adsorption from industrial wastewater. J. Hazard. Mater. 2011. 192(3): 1525. https://doi.org/10.1016/j.jhazmat.2011.06.072
37. Ghiaci M., Abbaspur A., Kia R., Seyedeyn-Azad F. Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM 41. Sep. Purif. Technol. 2004. 40(3): 217. https://doi.org/10.1016/j.seppur.2004.03.001
38. Matias T., Marques J., Quina M.J., Gando-Fereira L., Valente A.J.M., Portugal A., Duraes L. Silica-based aerogels as adsorbent for phenol-derivative compounds. Colloid Surf., A. 2015. 480: 260.
DOI: https://doi.org/10.15407/hftp07.04.421
Copyright (©) 2016 I. M. Trofymchuk, N. V. Roik, L. A. Belyakova
This work is licensed under a Creative Commons Attribution 4.0 International License.