Preparation and characterization of titanium dioxide modified with carbon with enhanced photocatalytic activity
DOI: https://doi.org/10.15407/hftp07.04.432
Abstract
Keywords
References
1. Wang Sh., Zhao L., Bai L., Yan J., Jiang Q., Lian J. Enhancing photocatalytic activity of disorder engineered C/TiO2 and TiO2 nanoparticles. J. Mater. Chem. A. 2014. 2: 7439. https://doi.org/10.1039/c4ta00354c
2. Xing B., Shi Ch., Zhang Ch., Yi G., Chen L., Guo H., Huang G., Cao J. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J. Nanomater. 2016. 2016: Article ID 8393648.
3. Ansón-Casaos A., Tacchini I., Unzue A., Martínez M. T. Combined modification of a TiO2 photocatalyst with two different carbon forms. Appl. Surf. Sci. 2013. 270: 675. https://doi.org/10.1016/j.apsusc.2013.01.120
4. Lin C., Song Y., Cao L., Chen Sh. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale. 2013. 5: 4986. https://doi.org/10.1039/c3nr01033c
5. Matos Ju., Miranda C., Poon P. S., Mansilla H. D. Nanostructured hybrid TiO2-C for the photocatalytic conversion of phenol. Sol. Energ. 2016. 134: 64. https://doi.org/10.1016/j.solener.2016.04.043
6. Yan Y., Yu Y., Cao C., Huang Sh., Yang Y., Yang X., Cao Y. Enhanced photocatalytic activity of TiO2–Cu/C with regulation and matching of energy levels by carbon and copper for photoreduction of CO2 into CH4. Cryst. Eng. Comm. 2016.18: 2956.
7. Khalyavka T.A., Kapinus E.I., Viktorova T.I., Tsyba N.N. Adsorption and photocatalytic properties of nanodimensional titanium–zinc oxide composites. Theor. Exp. Chem. 2009. 45(4): 234. https://doi.org/10.1007/s11237-009-9087-4
8. Guinier A. Théorie et technique de la radiocristallographie. (Paris: Dunot, 1956).
9. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular Layers. J. Am. Chem. Soc. 1938. 60(2): 309. https://doi.org/10.1021/ja01269a023
10. Barret E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951. 73(3): 373. https://doi.org/10.1021/ja01145a126
11. Kapinus E.I., Viktorova T.I., Khalyavka T.A. Dependence of the rate of photocatalytic decomposition of safranine on the catalyst concentration. Theor. Exp. Chem. 2009. 45(2): 114. https://doi.org/10.1007/s11237-009-9071-z
12. Kapinus E.I., Viktorova T.I., Khalyavka T.A. The mechanism and kinetics of photocatalytic degradation of DDT on the oxide titanium catalysts. Ukr. Chem. J. 2009. 75(12): 102. [in Ukrainian].
13. Ding Z., Lu G.Q., Greenfield P.F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B. 2000. 104(19): 4815. https://doi.org/10.1021/jp993819b
14. Cheng C.H., Lehmann J., Thies J.E., Burton S.D., Engelhard M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006. 37(11): 1477. https://doi.org/10.1016/j.orggeochem.2006.06.022
15. Li L., Yi Zh., Yuexiang Zh., Youchang X. Effect of carbon content on photocatalytic activity of C/TiO2 composite. Front. Chem. Chin. 2007. 2(1): 64. https://doi.org/10.1007/s11458-007-0013-9
16. Dong F., Wang H., Wu Z. One step «green» synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys. Chem. C. 2009. 113(38): 16717. https://doi.org/10.1021/jp9049654
17. Leary R., Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon. 2011. 49(3): 741. https://doi.org/10.1016/j.carbon.2010.10.010
DOI: https://doi.org/10.15407/hftp07.04.432
Copyright (©) 2016 M. V. Bondarenko, T. A. Khalyavka, S. V. Camyshan, I. S. Petrik
This work is licensed under a Creative Commons Attribution 4.0 International License.