Chemistry, Physics and Technology of Surface, 2016, 7 (4), 432-438.

Preparation and characterization of titanium dioxide modified with carbon with enhanced photocatalytic activity



DOI: https://doi.org/10.15407/hftp07.04.432

M. V. Bondarenko, T. A. Khalyavka, S. V. Camyshan, I. S. Petrik

Abstract


The aim of our work was to prepare nanoscale composites based on TiO2 and carbon photocatalytically active under UV and visible irradiation in the destruction of safranin T. The samples were characterized by XRD, BET, SEM, UV-Vis and IR spectroscopy. X-ray analysis revealed photocatalytically active phase of anatase in all the composites. The powders consist of roundish agglomerates, crystallite size in agglomerates is 15 nm. Analysis of nitrogen sorption–desorption isotherms for the samples show the presence of a hysteresis loop which is the evidence for mesoporous structure. Vibrational spectra of the composites reveal the following bands: near 700 cm−1 corresponding to the Ti–O stretching vibration; around 3407 cm–1 attributed to the surface-adsorbed H2O; at 1628 cm–1 which is referred to deformational vibrations in adsorbed water, and around 1300–1500 cm–1 corresponding to carbon–oxygen bonds. Absorption spectra of nanocomposites show a bathochromic shift as compared with those of TiO2. Modification of TiO2 with carbon leads to band gap narrowing of composites, as well as to emerging of additional energy levels in the band gap of TiO2 with energies of 3.12–3.14 eV under valence band; that leads to sensitizing of C/TiO2 composites to visible irradiation. Nanocomposites show higher photocatalytic activity compared to pure TiO2. It may be connected with the participation of carbon in the inhibition of electron–hole recombination, prolongation of charge lifetime, increasing of efficiency of interfacial charge separation from TiO2 to carbon and formation of doping electronic states inside the TiO2 band gap.

Keywords


titanium dioxide; carbon; safranin T; photocatalysis

Full Text:

PDF

References


1. Wang Sh., Zhao L., Bai L., Yan J., Jiang Q., Lian J. Enhancing photocatalytic activity of disorder engineered C/TiO2 and TiO2 nanoparticles. J. Mater. Chem. A. 2014. 2: 7439. https://doi.org/10.1039/c4ta00354c 

2. Xing B., Shi Ch., Zhang Ch., Yi G., Chen L., Guo H., Huang G., Cao J. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J. Nanomater. 2016. 2016: Article ID 8393648.

3. Ansón-Casaos A., Tacchini I., Unzue A., Martínez M. T. Combined modification of a TiO2 photocatalyst with two different carbon forms. Appl. Surf. Sci. 2013. 270: 675. https://doi.org/10.1016/j.apsusc.2013.01.120 

4. Lin C., Song Y., Cao L., Chen Sh. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale. 2013. 5: 4986. https://doi.org/10.1039/c3nr01033c 

5. Matos Ju., Miranda C., Poon P. S., Mansilla H. D. Nanostructured hybrid TiO2-C for the photocatalytic conversion of phenol. Sol. Energ. 2016. 134: 64. https://doi.org/10.1016/j.solener.2016.04.043 

6. Yan Y., Yu Y., Cao C., Huang Sh., Yang Y., Yang X., Cao Y. Enhanced photocatalytic activity of TiO2–Cu/C with regulation and matching of energy levels by carbon and copper for photoreduction of CO2 into CH4. Cryst. Eng. Comm. 2016.18: 2956.

7. Khalyavka T.A., Kapinus E.I., Viktorova T.I., Tsyba N.N. Adsorption and photocatalytic properties of nanodimensional titanium–zinc oxide composites. Theor. Exp. Chem. 2009. 45(4): 234. https://doi.org/10.1007/s11237-009-9087-4 

8. Guinier A. Théorie et technique de la radiocristallographie. (Paris: Dunot, 1956).

9. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular Layers. J. Am. Chem. Soc. 1938. 60(2): 309. https://doi.org/10.1021/ja01269a023 

10. Barret E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951. 73(3): 373. https://doi.org/10.1021/ja01145a126 

11. Kapinus E.I., Viktorova T.I., Khalyavka T.A. Dependence of the rate of photocatalytic decomposition of safranine on the catalyst concentration. Theor. Exp. Chem. 2009. 45(2): 114. https://doi.org/10.1007/s11237-009-9071-z 

12. Kapinus E.I., Viktorova T.I., Khalyavka T.A. The mechanism and kinetics of photocatalytic degradation of DDT on the oxide titanium catalysts. Ukr. Chem. J. 2009. 75(12): 102. [in Ukrainian].

13. Ding Z., Lu G.Q., Greenfield P.F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B. 2000. 104(19): 4815. https://doi.org/10.1021/jp993819b 

14. Cheng C.H., Lehmann J., Thies J.E., Burton S.D., Engelhard M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006. 37(11): 1477. https://doi.org/10.1016/j.orggeochem.2006.06.022 

15. Li L., Yi Zh., Yuexiang Zh., Youchang X. Effect of carbon content on photocatalytic activity of C/TiO2 composite. Front. Chem. Chin. 2007. 2(1): 64. https://doi.org/10.1007/s11458-007-0013-9 

16. Dong F., Wang H., Wu Z. One step «green» synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys. Chem. C. 2009. 113(38): 16717. https://doi.org/10.1021/jp9049654 

17. Leary R., Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon. 2011. 49(3): 741. https://doi.org/10.1016/j.carbon.2010.10.010  




DOI: https://doi.org/10.15407/hftp07.04.432

Copyright (©) 2016 M. V. Bondarenko, T. A. Khalyavka, S. V. Camyshan, I. S. Petrik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.