Chemistry, Physics and Technology of Surface, 2016, 7 (4), 453-462.

Synthesis and characterization of nitrogen and zirconium ions doped TiO2 films for photocatalytic application



DOI: https://doi.org/10.15407/hftp07.04.453

O. P. Linnik

Abstract


Codoped by nitrogen and zirconium ions titania thin films have been obtained by sol-gel and pulse laser deposition (PLD) methods to investigate the influence of zirconium ions as well as the synthesis procedure on the efficiency of nitrogen incorporation into semiconductive lattice that, in turns, effected on the film activity under ultraviolet and visible light. The composition of the films and the synthesis methods changed the optical properties of the materials as namely almost no effect of both doping agents on the band gap energy value was noted for the films obtained by pulse laser deposition technique, while its sharp narrowing was observed for nitrogen doped titania sol-gel sample. Additionally, the high absorption in the visible part of the spectra with the different maxima were registered for sol-gel films. Substitutional and interstitial nitrogen incorporation occurred in the case of sol-gel titania doped by both doping agents and only nitrogen, respectively. However, both types of nitrogen atoms were detected by X-ray photoelectron spectroscopy measurements for the laser deposited films and the relative intensity of its state was dependent whether single or double doping agents was used. Incorporation of each doping agent in titania matrix positively influenced on the photocatalytic activity of the sol-gel films under both ultraviolet and visible light. In the case of pulse laser deposited films, the presence of double doping agent stimulated the activity under UV light and the doping only by nitrogen led to the increase of photoactivity in visible light.

Keywords


nitrogen doped titania; zirconium ions; sol-gel method; PLD; photocatalysis

Full Text:

PDF

References


1. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972. 238: 37. https://doi.org/10.1038/238037a0 

2. Czoska A.M., Livraghi S., Chiesa M., Giamello E., Agnoli S., Granozzi G., Finazzi E., Di Valentin C., Pacchioni G. The nature of defects in Fluorine-doped TiO2. J. Phys. Chem. C. 2008. 112(24): 8951. https://doi.org/10.1021/jp8004184 

3. Linnik O., Kisch H. On the mechanism of nitrogen fixation at nanostructured iron titanate films. Photochem. Photobiol. Sci. 2006. 5: 938. https://doi.org/10.1039/b608396j 

4. Asahi R., Morikawa T., Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium dioxide. Science. 2001. 293(5528): 269. https://doi.org/10.1126/science.1061051 

5. IrieH., WatanabeY., HashimotoK. Nitrogen-concentration dependence on photocatalyticactivity of TiO2-xNx powders. J. Phys. Chem. B. 2003. 107(23): 5483. https://doi.org/10.1021/jp030133h 

6. Serpone N. Is the band gap of pristine TiO2 narrowed by anion- andcation-doping of titanium dioxide in second-generation photocatalysts. J. Phys. Chem. B. 2006. 110(48): 24287. https://doi.org/10.1021/jp065659r 

7. Yin S., Ihara K., Aita Y.M., Sato K.T. Visible-light induced photocatalytic activity of TiO2−xAy (A = N, S) prepared by precipitation route. J. Photochem. Photobiol. A. 2006. 179(1–2): 105. https://doi.org/10.1016/j.jphotochem.2005.08.001 

8. Kobayakawa K., Murakami Y., Sato Y. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. J. Photochem. Photobiol. A. 2005. 170(2):177. https://doi.org/10.1016/j.jphotochem.2004.07.010 

9. Cong Y., Zhang J., Chen F., Anpo M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C. 2007. 111(19): 6976. https://doi.org/10.1021/jp0685030 

10. Huang D., Liao S., Quan S., Liu L., He Z., Wan J., Zhou W. Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process. J. Non-Cryst. Solids. 2008. 354(33): 3965. https://doi.org/10.1016/j.jnoncrysol.2008.05.026 

11. Beranek R., Kisch H., Beranek R., Kisch H. Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem. Photobiol. Sci. 2008. 7: 40. https://doi.org/10.1039/B711658F 

12. Yuan J., Chen M., Shi J., Shangguan W. Preparation and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int. J. Hydrogen Energy. 2006. 31(10): 1326. https://doi.org/10.1016/j.ijhydene.2005.11.016 

13. Bacsa R., Kiwi J., Ohno T., Albers P., Nadtochenko V. Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J. Phys.Chem. B. 2005. 109(12): 5994 – 6003. https://doi.org/10.1021/jp044979c 

14. Di V.C., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Paganini M.C., Giamello E. N-doped TiO2: Theory and experiment. Chem. Phys. 2007. 339(1–3): 44.

15. Emeline A.V., Kuznetsov V.N., Rybchuk V.K., Serpone N. Visible-light-active titania photocatalysts: the case of N-doped TiO2 s-properties and some fundamental issues. Int. J. Photoenergy. 2008. 2008: Article ID 258394.

16. Shestopal N., Linnik O., Smirnova N. Influence of metal and non-metal ions doping on the structural and photocatalytic properties of titania films. Him. Fiz. Tehnol. Poverhni. 2015. 6(2): 203. https://doi.org/10.15407/hftp06.02.203 

17. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 2000. 1(1): 1. https://doi.org/10.1016/S1389-5567(00)00002-2 

18. Ristoscu C., Mihailescu I.N. Biomimetic Coatings by pulsed laser deposition, chapter 7. In: «Laser Technology in Biomimetics». Basics and Applications, Series: Biological and Medical Physics, biomedical Engineering. (Springer-Verlag Heidelberg, New York, Dordrecht, London, 2013). P. 163.

19. Mihailescu I.N., Ristoscu C., Bigi A., Mayer I. Advanced biomimetic implants based on nanostructured coatings synthesized by pulsed laser technologies, Chapter 10. In «Laser-Surface Interactions for New Materials Production Tailoring Structure and Properties». Series: Springer Series in Materials Science. V. 130. 2010. P. 235.

20. Mihailescu I.N., Gyorgy E. Pulsed Laser Deposition: An Overview. In: International Trends in Optics and Photonics. (Heidelberg: Springer, 1999). https://doi.org/10.1007/978-3-540-48886-6_13 

21. Linnik O., Shestopal N., Smirnova N., Eremenko A., Korduban O., Kandyba V., Kryshchuk T., Socol G., Stefan N., Popescu-Pelin G., Ristoscu C., Mihailescu I.N. Correlation between electronic structure and photocatalytic properties of non-metal doped TiO2/ZrO2 thin films obtained by pulsed laser deposition method. Vacuum. 2015.114: 166.

22. Gnatuk Yu., Smirnova N., Korduban O., Eremenko A. Effect of zirconium incorporation onthe stabilization of TiO2 mesoporous structure. Surf. Interface Anal. 2010. 42(6–7): 1276. https://doi.org/10.1002/sia.3494 

23. Smirnova N., Gnatyuk Yu., Eremenko A., Kolbasov G., Vorobetz V., Kolbasova I., Linyucheva O. Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films. Int. J. Photoenergy. 2006. Article ID 85469: 1.

24. Yang J., Bai H., Jiang Q., Lian J. Visible-light photocatalysis in nitrogen-carbon-doped TiO2 films obtained by heating TiO2 gel-film in an ionized N2 gas. Thin Solid Films. 2008. 516(8): 1736. https://doi.org/10.1016/j.tsf.2007.05.034 

25. Kisch H., Sakthivel S., Janczarek M., Mitoraj D. A low-band gap, nitrogen-modified titania visible-light photocatalyst. J. Phys. Chem. C. 2007. 111(30): 11445. https://doi.org/10.1021/jp066457y 

26. Wang C.T., Wang, Lin J.C. Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts. Appl. Surf. Sci. 2008. 254(15): 4500. https://doi.org/10.1016/j.apsusc.2008.01.024 

27. Alam M.J., Cameron D.C. Preparation and characterisation of TiO2 thin films by sol-gel method. J. Sol-Gel Sci. Technol. 2002. 25(2): 137. https://doi.org/10.1023/A:1019912312654 

28. Linnik O., Petrik I., Smirnova N., Kandyba V., Korduban O., Eremenko A., Socol G., Stefan N., Ristoscu C., Mihailescu I.N., Sutan C., Malinovski V., Djokic V., Janakovic D. TiO2/ZrO2 thin films synthesized by PLD in low pressure N-, C- and/or O-containing gases: structural, optical and photocatalytic properties. Digest Journal of Nanomaterials and Biostructures. 2012. 7(3): 1343.

29. Mitoraj D., Kisch H. On the mechanism of urea-induced titania modification. Chemistry. 2010. 16(1): 261. https://doi.org/10.1002/chem.200901646 

30. Chen H., Nambu A., Wen W., Graciani J., Zhong Z., Hanson J.C., Fujita E., Rodriguez J.A. Reaction of NH3 with Titania:  N-doping of the oxide and TiN formation. J. Phys. Chem. C. 2007. 111(3): 1366. https://doi.org/10.1021/jp066137e 

31. Gnatyuk Yu., Smirnova N., Eremenko A., Ilyinl V. Design and photocatalytic activity of mesoporous TiO2/ZrO2 thin films. Adsorp. Sci. Technol. 2005. 23(6): 4978. https://doi.org/10.1260/026361705774859893 

32. DiValentin C., Pacchioni G., Livraghi S.A.S., Giamello E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B. 2005. 109(23):11414. https://doi.org/10.1021/jp051756t 




DOI: https://doi.org/10.15407/hftp07.04.453

Copyright (©) 2016 O. P. Linnik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.