Theoretical evaluation of the temperature field distribution in the silicon periodic nanostructures during thermal annealing
DOI: https://doi.org/10.15407/hftp08.01.003
Abstract
Interesting direction of investigations is using surface-periodic structures in solar cells, because micrometer and nanometer periodic structures enlarge area of solar cells surface. At this, for using in solar cells, creation is proposed of p-n or n-p junctions in micro-threads of those structures. Taking into consideration that creation of those junctions is to be realized under a temperature impact, necessity arouses of analyzing temperature distribution in periodic structures through heating. It makes it possible to control the alloying process more widely and to create p-n or n-p junctions in micro-threads. In the process of thermal annealing of porous silicon, desorption of electrochemical processing products takes place on its surface and its luminescent properties change.
In this work numerical calculations are made of a temperature distribution in periodic structures on silicon surface in process of thermal annealing.
Calculations realized in the given investigation make it possible to forecast a temperature distribution in silicon periodic structures in process of thermal annealing. It gives a possibility for more precise alloying such structures. It is shown that after 40 µs the specimen gets warmed thoroughly. But a small irregular warming takes place between micro-threads that can be caused by heated air fluctuations. Distribution of the temperature profiles is shown at different time intervals.It is shown that in case of thermal annealing a span between micro-threads heats up.
Keywords
References
1. Vorzobova N.D., Burunkova J.E., Bulgakov V.G. Investigation of polymeric periodical structures formation process at UV-curing composition materials by laser interference lithography method. J. Instr. Eng. 2011. 54(12): 62. [in Russian].
2. Medvid A., Dmitruk I., Onufrijevs P., Pundyk I. Properties of nanostructure formed on SiO2/Si interface by laser radiation. Solid State Phenomena. 2008. 131–133: 559. https://doi.org/10.4028/www.scientific.net/SSP.131-133.559
3. Zhang Z., Wang Z., Wang D., Ding Y. Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography. J. laser Appl. 2014. 26(1): 012010. https://doi.org/10.2351/1.4849715
4. Gavrylyuk O.O., Semchuk O.Yu., Bratus O.L., Evtukh A.A., Steblova O.V., Fedorenko L.L. Study of thermophysical properties of crystalline and silicon-rich silicon oxide layers. Appl. Surf. Sci. 2014. 302: 213. https://doi.org/10.1016/j.apsusc.2013.09.171
5. Steblova O.V., Evtukh A.A., Bratus' O.L., Fedorenko L.L., Voitovych M.V., Lytvyn O.S., Gavrylyuk O.O., Semchuk O.Yu. Transformation of SiOx films into nanocomposite SiO2(Si) films under thermal and laser annealing. SPQEO. 2014. 17(3): 295.
6. Gavrylyuk O.O., Semchuk O.Yu., Steblova O.V., Evtukh A.A., Fedorenko L.L., Bratus O.L., Zlobin S.O., Karlsteen M. Influence of laser annealing on SiOx films properties. Appl. Surf. Sci. 2015. 336: 217. https://doi.org/10.1016/j.apsusc.2014.11.066
7. Born M., Wolf E. Principles of Optics. (Moscow: Nauka, 1973). [in Russian].
8. Richter J., Meinertz J., Ihlemann J. Patterned laser annealing of silicon oxide films. Appl. Phys. A. 2011. 104(3): 759. https://doi.org/10.1007/s00339-011-6451-8
9. Wang D., Ihlemann J., Schaaf P. Complex patterned gold structures fabricated via laser annealing and dealloying. Appl. Surf. Sci. 2014. 302: 74. https://doi.org/10.1016/j.apsusc.2013.12.066
10. Bolle M., Lazare S. Characterization of submicrometer periodic structures produced on polymer surfaces with low fluence ultraviolet laser radiation. J. Appl. Phys. 1993. 73(7): 3516. https://doi.org/10.1063/1.352957
11. Gurevich E.I., Gurevich S.V. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 2014. 302: 118. https://doi.org/10.1016/j.apsusc.2013.10.141
12. Heitz J., Reisinger B., Fahrner V. Laser-induced periodic surface structures (LIPSS) on polymer surfaces. In: International Conference on Transparent Optical Networks (July 2, 2012, Coventry, England). P. 1. https://doi.org/10.1109/icton.2012.6253723
13. Rebollar E., Vázquez de Aldana J., Martín-Fabiani I. Assessment of Femtosecond Laser Induced Periodic Surface Structures on Polymer Films. Phys. Chem. Chem. Phys. 2013. 15: 11287. https://doi.org/10.1039/c3cp51523k
14. Varache R. Ph.D (Chem.) Thesis. (Berlin, 2012).
15. Nayak B.K., Gupta M.C. Ultrafast laser-induced selforganized conical micro/nano surface structures and their origin. Opt. Lasers Eng. 2010. 48(10): 966. https://doi.org/10.1016/j.optlaseng.2010.05.009
16. Kisilev V.A., Polisadin S.V., Postnikov A.V. The change of porous silicon optical constants due to thermal annealing in vacuum. Fiz. i Tekh. Poluprovodnikov. 1997. 31(7): 830. [in Russian].
17. Golovan' L.A., Zheltikov A.M., Kashkarov P.K. Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap. JETP Lett. 1999. 69(4): 300. https://doi.org/10.1134/1.568027
18. Zacharias M., Heitmann J., Scholzet R. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 2002. 80(4): 661. https://doi.org/10.1063/1.1433906
19. Kostishko B.M., Zolotov A.V. Modeling of thermal annealing porous silicon during the presence of linear temperature gradient. In: Actual Problems of Solid-State Electronics and Microelectronics (Sept. 24, 2006, Divnomorskoye, Russia). P.177.
20. Kostishko B.M., Zolotov A.V., Atazhanov Sh.R. Comparative simula-tion of annealing of porous silicon substrate of simple cubic and dia-mond-like lattice structure. Physics of Low-Dimensional Structures. 2004. 3-4: 1.
21. Koroteev N.I., Shumay I.L. The Physics of High-power Laser Radiation. (Moscow: Nauka, 1991). [in Russian].
DOI: https://doi.org/10.15407/hftp08.01.003
Copyright (©) 2017 O. O. Havryliuk, O. Yu. Semchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.