Chemistry, Physics and Technology of Surface, 2017, 8 (1), 18-29.

Light emitting “polymer-nanoparticles” coatings on macroporous silicon substrates



DOI: https://doi.org/10.15407/hftp08.01.018

L. A. Karachevtseva, M. T. Kartel, K. P. Konin, O. O. Lytvynenko, V. F. Onyshchenko, Wang Bo

Abstract


We investigate the conditions for increase of the photoluminescence of CdS nanocrystals in polyethyleneimine and polyethyleneimine with carbon multiwall nanotubes on macroporous silicon substrates. Macroporous silicon structures are made using the photoelectrochemical etching of n‑Si wafers. Macropores with diameter Dp = 2¸5 mm, depth hp = 40¸120 mm and concentration Np = (1¸6)×106 cm‑2 were formed. CdS nanocrystals of 1.8–2 nm in size are synthesized in reaction between Cd2+ and HS- in a colloidal solution of polyethyleneimine in water. Carbon multiwall high purity nanotubes with submicron length and 20 nm diameter were produced by catalytic pyrolysis of unsaturated hydrocarbons. “Polymer-nanoparticles” coatings are deposited from a colloidal solution in water on single crystalline silicon, macroporous silicon and oxidized macroporous silicon. The maximal photoluminescence intensity of CdS nanocrystals is measured for the oxidized macroporous silicon substrates with maximal electric field strength at the Si-SiO2 interface. The photoluminescence quantum yield of CdS nanocrystals on the surface of oxidized macroporous silicon increases with timeand reaches 28 %. Photoluminescence of polyethyleneimine with carbon multiwall nanotubes on macroporous silicon with microporous layer is 3–6 times more intense as compared with substrates c-Si, macroporous Si and oxidized macroporous Si due to a non-radiative proton recombination decrease at the silicon matrix boundary with microporous layer and nanocoating.

Keywords


macroporous silicon substrates; polyethyleneimine; CdS nanocrystals; multiwall carbon nanotubes

Full Text:

PDF

References


1. Raevskaya A.E., Stroyuk A.L., Kuchmii S.Ya. Optical properties of colloidal CdS nanoparticles stabilized with the sodium polyphosphate and their behaviour under pulse photoexcitation. Theor. Exp. Chem. 2003. 39(3): 158. https://doi.org/10.1023/A:1024933023783

2. Chistyakov A.A., Martynov I.L., Mochalov K.E., Oleinikov V.A., Sizova S.V., Ustinovich E.A. Interaction of CdSe/ZnS core–shell semiconductor nanocrystals in solid thin films. Laser Phys. 2006. 16(12): 1625. https://doi.org/10.1134/S1054660X06120061

3. Trindade T., O'Brien P., Pickett N.L. Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem. Mater. 2001. 13(11): 3843.https://doi.org/10.1021/cm000843p

4. Shen Y., Lee Y. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology. 2008. 19(4): 045602. https://doi.org/10.1088/0957-4484/19/04/045602

5. Beato-Lopez J.J., Fernandez-Ponce C., Blanco E., Barrera-Solano C., Ramírez-del-Solar M., Dominguez M. García-Cozar F., Litran R. Preparation and characterization of fluorescent CdS quantum dots used for the direct detection of GST fusion proteins. Nanomater Nanotechnol. 2012. 2: 10.https://doi.org/10.5772/53926

6. Chestnoy N., Harris T.D., Hull R., Brus L.E. Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 1986. 90(15): 3393. https://doi.org/10.1021/j100406a018

7. Jones M., Lo Sh.S., Scholes G.D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. PNAS. 2009. 106(9): 3011.https://doi.org/10.1073/pnas.0809316106

8. Tomczak N., Jańczewski D., Han M., Vancso G.J. Designer polymer–quantum dot architectures. Prog. Polym. Sci. 2009. 34(5): 393. https://doi.org/10.1016/j.progpolymsci.2008.11.004

9. Kompan M.E., Aksyanov I.G. Near-UV narrow-band luminescence of polyethylene and polytetrafluoroethylene. Phys. Solid. State. 2009. 51(5): 1083. https://doi.org/10.1134/S1063783409050291

10. Birner A., Wehrspohn R.B., Gosele U.M., Busch K. Silicon-Based Photonic Crystals. Adv. Mater. 2001. 13 (6): 377. https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X

11. Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semicond. Phys. Quantum. Electron. Optoelectron. 2004. 7(4): 430.

12. Karachevtseva L., Karas' M., Onishchenko V., Sizov F. Surface polaritons in 2D macroporous silicon structures. Int. J. Nanotechnology. 2006. 3(1): 76. https://doi.org/10.1504/IJNT.2006.008722

13. Glushko A., Karachevtseva L. Photonic band structure of oxidized macroporous silicon. Opto-Electron. Rev. 2006. 14(3): 201. https://doi.org/10.2478/s11772-006-0026-9

14. Cullis A.G., Canham L.T., Calcott P.D.J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997. 82(3): 909. https://doi.org/10.1063/1.366536

15. Karachevtseva L., Kuchmii S., Lytvynenko O., Sizov F., Stronska O., Stroyuk A. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Appl. Surf. Sci. 2011. 257(8): 3331. https://doi.org/10.1016/j.apsusc.2010.11.016

16. Karachevtseva L., Goltviansky Yu., Kolesnyk O., Lytvynenko O., Stronska O. Wannier-Stark effect and electron-phonon interaction in macroporous silicon structures with SiO2 nanocoatings. Opto-Electron. Rev. 2014. 22(4): 201. https://doi.org/10.2478/s11772-014-0199-6

17. Nickel N.H., Mei P., Boyce J.B. On the nature of the defect passivation in polycrystalline silicon by hydrogen and oxygen plasma treatments. IEEE Trans Electron Devices. 1995. 42(8): 1559. https://doi.org/10.1109/16.398672

18. Lehman V. The Physics of macropore formation in low doped n-type silicon. J. Electrochem. Soc. 1993, 140(10): 2836. https://doi.org/10.1149/1.2220919

19. Karachevtseva L.A., Litvinenko O.A., Malovichko E.A. Stabilization of electrochemical formation of macropores in n-Si. Theor. Exp. Chem. 1998. 34(5): 287. https://doi.org/10.1007/BF02523264

20. Awasthi K., Srivastava A., Srivastava O.N. Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 2005. 5(10): 1616. https://doi.org/10.1166/jnn.2005.407

21. Harrick N.J. Internal Reflection Spectroscopy. (New York/London/Sydney: Interscience Publishers, 1967).

22. Seraphin B.O., Bottka N. Band-structure analysis from electro-reflectance studies. Phys. Rev. 1966. 145(2): 628. https://doi.org/10.1103/PhysRev.145.628

23. Enderlein R. The Influence of collisions on the Franz-Keldysh effect. Phys. Stat. Sol. B. 1967. 20(1): 295. https://doi.org/10.1002/pssb.19670200128

24. Yu P.Y., Cardona M. Fundamentals of Semiconductors. (Berlin Heidelberg: Springer-Verlag, 2010). https://doi.org/10.1007/978-3-642-00710-1

25. Pokhodenko V.D., Kuchmii S.Ya., Korzhak A.V., Kryukov A.I. Photochemical behavior of nanoparticles of cadmium sulfide in the presence of a reducing agent. Theor. Exp. Chem. 1996. 32(2): 88. https://doi.org/10.1007/BF01373092

26. Kim J.I., Kim J., Lee J., Jung D., Kim H., Choi H., Lee S., Byun S., Kang S., Park B. Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res. Lett. 2012. 7: 482. https://doi.org/10.1186/1556-276X-7-482

27. Karachevtseva L., Onyshchenko V., Sachenko A. Photocarrier transport in 2D macroporous silicon structures. Opto-Electron. Rev. 2010. 18(4): 394. https://doi.org/10.2478/s11772-010-0042-7

28. Thostensona E.T., Renb Z., Chou T. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 2001. 61(13): 1899. https://doi.org/10.1016/S0266-3538(01)00094-X




DOI: https://doi.org/10.15407/hftp08.01.018

Copyright (©) 2017 L. A. Karachevtseva, M. T. Kartel, K. P. Konin, O. O. Lytvynenko, V. F. Onyshchenko, Wang Bo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.