Chemistry, Physics and Technology of Surface, 2017, 8 (1), 30-43.

Removal of uranyl cations from iron-containing solutions using compositesorbents based on polymer matrix



DOI: https://doi.org/10.15407/hftp08.01.030

O. V. Perlova, Yu. S. Dzyazko, N. O. Perlova, V. F. Sazonova, I. Yu. Halutska

Abstract


Some technologies of uranium recovery from minerals involve hydrochloric acid where cationic forms of uranyl ions dominate. The work is devoted to development and testing of sorbents for removal of uranium(VI) from liquid wastes containing also an excess of Fe(III) ions. Organic-inorganic ion-exchangers based on gel-like strongly acidic resin containing zirconium hydrophosphate have been proposed for this purpose. The theoretical approach, which allows us to control a size of incorporated particles, has been applied to modification of the resin with the inorganic constituent. The results of TEM show that the samples contain mainly aggregates of nanoparticles (300 nm) or simultaneously aggregates (200 nm) and agglomerates (several microns). The synthesized organic-inorganic ion-exchangers contain from 10 to 50 mass. % of zirconium hydrophosphate. Composition and structure of the ion-exchangers affect their sorption properties. Sorption of U(VI) from modeling solutions containing also HCl and Fe(III) ions was researched under batch conditions. The initial pH of the solution was within the interval of 2–4, the sorbent dosage was 2–10 g/dm3. Simultaneous sorption of U(VI) and Fe(III) species was shown to occur, the removal of Fe(III) species is faster and more complete. Increasing of the sorbent dosage and the solution pH results in improvement of the efficiency of uranium (VI) removal and increase of the exchange rate. Sorption degree of uranyl cations reaches about 90 % after 3 h at pH 2 and the sorbent dosage of 10 g/dm3. When the sorbent dosage is 5 g/dm3 and the solution pH is 4 the sorption degree reaches 100 % for the composite containing 10 % of the inorganic constituent. The sorption degree is lower for the materials containing higher amount of zirconium hydrophosphate. The rate of sorption has been found to obey mainly particle diffusion model. The models of chemical reaction of pseudo-first or pseudo-second order can be also applied. The composites show mainly higher sorption capacity towards U(VI) at pH 2, the pristine resin demonstrates higher capacity towards Fe(III) under these conditions. The organic-inorganic ion-exchangers can be recommended for polishing of liquid wastes which are formed during monazite processing.

Keywords


gel-like strongly acidic resin; zirconium hydrophosphate; sorption; uranium(VI) compounds

Full Text:

PDF

References


1. Gupta C., Singh H. Uranium Resource Processing: Secondary Resources. (Berlin, Heidelberg, New York: Springer-Verlag, 2003).

2. Schnell H. An Overview of uranium production from unconventional resources. In: Nuclear Fuel Cycle and Materials. Uranium Production Cycle. Proc. Technical Meeting On Uranium from Unconventional Resources (November 4-6, 2009, Vienna, Austria).

3. Chaki A. Unconventional uranium resources - Indian scenario. In: Nuclear Fuel Cycle and Materials. Uranium Production Cycle. Proc. Technical Meeting On Uranium from Unconventional Resources (November 4-6, 2009, Vienna, Austria).

4. Zhu Z., Pranolo Y., Cheng Ch.Y. Separation of uranium and thorium from rare earths for rare earth production. Miner. Eng. 2015. 77: 185.https://doi.org/10.1016/j.mineng.2015.03.012

5. Lapidus G.T., Doyle F.M. Selective thorium and uranium extraction from monazite: II. Approaches to enhance the removal of radioactive contaminants. Hydrometallurgy. 2015. 155: 161. https://doi.org/10.1016/j.hydromet.2015.03.015

6. Wickleder M.S., Fourest B., Dorhout P.K. Thorium. In: The Chemistry of the Actinide and Transactinide Elements. (Netherlands: Springer, 2006). https://doi.org/10.1007/1-4020-3598-5_3

7. Kaplan G.E., Uspenskaya T.A., Zarembo Yu.I., Chirkov I.V. Thorium, its Raw Resources, Chemistry and Technology. (Moscow: Atomizdat, 1960). [in Russian].

8. Zelikman A.N., Korshunov B.G. Metallurgy of Rare Metals. (Moscow: Metallurgiya, 1991). [in Russian].

9. Zaganiari E.J. Ion Exchange Resins in Uranium Hydrometallurgy. (Paris: Books on Demand France, 2009).

10. Pilipenko I.V., Kovalchuk I.A., Kornilovich B.Yu. Synthesis and sorption properties of montmorillonite intercalated with aluminum and titanium polyhydroxocomplexes. Him. Fiz. Tehnol. Poverhni. 2015. 6(3): 336. [in Russian]. https://doi.org/10.15407/hftp06.03.336

11. Tobilko V., Lypskyi V., Kovalchuk I., Spasonova L., Kornilovich B. Biosorption of uranium on immobilized microalgae. Pol. J. Chem. 2008. 82(1–2): 249.

12. Bogolepov A.A., Pshinko G.N., Kornilovich B.Yu. The impact of complexing agents on the processes of sorption treatment of waters containing uranium. J. Water Chem. Technol. 2007. 29(1): 9. https://doi.org/10.3103/S1063455X0701002X

13. Kitagaki T., Kaneshiki T., Nomura M., Suzuki T. Uranium separation from a simulant fuel debris solution using a benzimidazole-type anion exchange resin. J. Nucl. Sci. Technol. 2016. 53(10): 1639. https://doi.org/10.1080/00223131.2016.1150219

14. Zagorodnyaya A., Abisheva Z., Sharipova A., Sadykanova S., Akcil A. Regularities of rhenium and uranium sorption from mixed solutions with weakly basic anion exchange resin. Miner. Process. Extr. Metall. Rev. 2015. 36(6): 391.https://doi.org/10.1080/08827508.2015.1039165

15. Tan L., Wang Yu., Liu Q., Wang J., Jing X., Liu L., Liu J., Song D. Enhanced adsorption of uranium(VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. J. 2015. 259: 752. https://doi.org/10.1016/j.cej.2014.08.015

16. Ma Sh., Huang L., Ma L., Shim Yu., Islam S.M., Wang P., Zhao L.-D., Wang Sh., Sun G., Yang X., Kanatzidis M.G. Efficient uranium capture by polysulfide/layered double hydroxide composites. J. Am. Chem. Soc. 2015. 137(10): 3670. https://doi.org/10.1021/jacs.5b00762

17. Gapel G. Speciation of actinides. Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health. (Chichester, UK: Wiley, 2005).

18. Peppard D.F., Mason G.W., Gergel M.V. The mutual separation of thorium, protoactinium, and uranium by tributyl phosphate extraction from hydrochloric acid. J. Inorg. Nucl. Chem. 1957. 3(6): 370. https://doi.org/10.1016/0022-1902(57)80044-X

19. Alhassanieh O., Abdul-Hadi A., Ghafaa M., Aba A. Separation of Th, U, Pa, Ra and Ac from natural uranium and thorium series. Appl. Radiat. Isot. 1999. 51(5): 493. https://doi.org/10.1016/S0969-8043(99)00068-8

20. Tsunashima A., Brindley G.W., Bastovanov M. Adsorption of uranium from solutions by montmorillonite; compositions and properties of uranyl montmorillonites. Clays Clay Miner. 1981. 29(1): 10. https://doi.org/10.1346/CCMN.1981.0290102

21. Rao T.P., Metilda P., Gladis J.M. Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination–an overview. Talanta. 2006. 68(4): 1047. https://doi.org/10.1016/j.talanta.2005.07.021

22. Zhang Q., Pan B., Zhang S., Wang J., Zhang W., Lu L. New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. J. Nanopart. Res. 2011. 13: 5355. https://doi.org/10.1007/s11051-011-0521-x

23. Dzyazko Yu.S., Ponomaryova L.N., Volfkovich Yu.M., Trachevskii V.V., Palchik A.V. Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous Mesoporous Mater. 2014. 198: 55. https://doi.org/10.1016/j.micromeso.2014.07.010

24. Dzyazko Yu.S., Ponomaryova L.N., Rozhdestvenskaya L.M., Vasilyuk S.L., Belyakov V.N. Electrodeionization of low-concentrated multicomponent Ni2+-containing solutions using organic-inorganic ion-exchangers. Desalination. 2014. 342: 52. https://doi.org/10.1016/j.desal.2013.12.019

25. Dzyazko Yu., Rozhdestvenska L., Palchik A., Lapicque F. Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers. Sep. Purif. Technol. 2005. 45(2): 141. https://doi.org/10.1016/j.seppur.2005.03.005

26. Dzyazko Yu.S., Perlova N.A., Perlova O.V., Ponomaryova L.N., Volfkovich Yu.M., Palchik A.V., Trachevskii V.V., Belyakov V.N. Organic-inorganic ion-exchanger containing zirconium phosphate, for extracting uranium compounds (VI) from aqueous solutions. Him. Fiz. Tehnol. Poverhni. 2016. 7(2): 119. [in Russian]. https://doi.org/10.15407/hftp07.02.119

27. Hoffmann P. Speciation of Iron. Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health. (Chichester, UK: Wiley, 2005).

28. Khan M.H., Warwick P., Evans N. Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere. 2006. 63(7): 1165. https://doi.org/10.1016/j.chemosphere.2005.09.060

29. Liang W.A., Zhang Z.Y., Zou S.F. Ultraviolet derivative spectrophotometric determination of trace iron with sulfosalicylic acid. Fenxi Kexue Xuebao. 1997. 13: 145.

30. Perlova O.V., Dzyazko Yu.S., Perlova N.A., Sazonova V.F., Palchik A.V. Sorption of cations UO22+ on the polymeric ion exchanger modified with zirconium hydrogen phosphate. Voprosy khimii i khimicheskoi technologii. 2016. 2: 150. [in Russian].

31. Atkins P.W. Physical Chemistry. (Oxford: Oxford University Press, 1998).

32. Helfferich F. Ion Exchange. (New York: Dover, 1995).

33. Ravdel A.A., Ponomareva A.M. (Eds.) Short Handbook of Physicochemical Variables. (Leningrad: Khimiya, 1983). [in Russian].

34. Yaroshenko N.A., Sazonova V.F., Perlova O.V., Perlova N.A. Sorption of uranium compounds by zirconium-silica nanosorbents. Russ. J. Appl. Chem. 2012. 85(6): 849. https://doi.org/10.1134/S107042721206002X

35. Krestov G.A. Thermodynamics of ionic processes in solutions. (Leningrad: Khimiya, 1984).

36. Lurie Y.Y. Handbook of Analytical Chemistry. (Moscow: Khimiya, 1989).

37. Zhao G., Wu X., Tan X, Wang X. Sorption of heavy metal ions from aqueous solutions: a review. Open Colloid Sci. J. 2011. 4: 19. https://doi.org/10.2174/1876530001104010019

38. Dzyazko Yu.S. Purification of a diluted solution containing nickel using electrodeionization. Desalination. 2006. 198(1–3): 47. https://doi.org/10.1016/j.desal.2006.09.008

39. Streat M., Takel G.N.J. Anion exchange kinetics of uranium in sulphate media. J. Inorg. Nucl. Chem. 1981. 43(4): 807. https://doi.org/10.1016/0022-1902(81)80225-4

40. Barnes C.D., da Silva Neves R.A., Streat M. Anion exchange of uranium from aqueous sulphuric acid solutions: diffusion kinetics. J. Appl. Chem. Biotechnol. 1974. 24(12): 787. https://doi.org/10.1002/jctb.5020241210




DOI: https://doi.org/10.15407/hftp08.01.030

Copyright (©) 2017 O. V. Perlova, Yu. S. Dzyazko, N. O. Perlova, V. F. Sazonova, I. Yu. Halutska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.