Room-temperature NH3 gas sensors based on heterostructures PbS/CdS
DOI: https://doi.org/10.15407/hftp08.01.098
Abstract
Keywords
References
1. Erisman J.W., Sutton M.A., Galloway J., Klimont Z., Winiwarter W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008. 1: 636. https://doi.org/10.1038/ngeo325
2. Durbin T.D., Wilson R.D., Norbeck J.M., Miller J.W., Huai T., Rhee S.H. Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles. Atmos. Environ. 2002. 36(9): 1475. https://doi.org/10.1016/S1352-2310(01)00583-0
3. Tang Y.L., Li Z.J., Ma J.Y., Guo Y.J., Fu Y.Q., Zu X.T. Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens. Actuators, B. 2014. 201: 114. https://doi.org/10.1016/j.snb.2014.04.046
4. Ament W., Huizenga J.R., Kort E., Mark T.W. van der, Grevink R.G., Verkerke G.J. Respiratory ammonia output and blood ammonia concentration during incremental exercise. Int. J. Sports Med. 1999. 20(2): 71. https://doi.org/10.1055/s-2007-971096
5. Wang S.Y., Ma J.Y., Li Z.J., Su H.Q., Alkurd N.R., Zhou W.L., Wang L., Du B., Tang Y.L., Ao D.Y., Zhang S.C., Yu Q.K., Zu Xiao-Tao Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J. Hazard. Mater. 2015. 285: 368. https://doi.org/10.1016/j.jhazmat.2014.12.014
6. Kim I.D., Rothschild A., Tuller H.L. Advances and new directions in gas-sensing devices. Acta. Mater. 2013. 61(3): 974. https://doi.org/10.1016/j.actamat.2012.10.041
7. Comini E., Baratto C., Concina I., Faglia G., Falasconi M., Ferroni M., Galstyan V., Gobbi E., Ponzoni A., Vomiero A., Zappa D., Sberveglieri V., Sberveglieri G. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators, B. 2013. 179: 3. https://doi.org/10.1016/j.snb.2012.10.027
8. Zhao Q., Hou L., Huang R., Li S. Surfactant-assisted growth and characterization of CdS nanorods. Inorg. Chem. Commun. 2003. 6(12): 1459. https://doi.org/10.1016/j.inoche.2003.09.010
9. Zhou H. S., Honma I., Komiyama H., Haus J. W. Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system's synthesis and properties. J. Phys. Chem. 1993. 97(4): 895. https://doi.org/10.1021/j100106a015
10. Zhou H. S., Sasahara H., Honma I., Komiyama H., Haus J. W. Coated semiconductor nanoparticles: the CdS/PbS system's photoluminescence properties. Chem. Mater. 1994. 6(9): 1534. https://doi.org/10.1021/cm00045a010
11. Liu B., Chew C. H., Gan L. M., Xu G. Q., Li H. P., Lam Y. L., Kam C. H., Que W. X. Third-order nonlinear optical response in PbS-coated CdS nanocomposites. J. Mater. Res. 2001. 16(06): 1644. https://doi.org/10.1557/JMR.2001.0228
12. Yadav S.K., Jeevanandam P. Thermal decomposition approach for the synthesis of CdS-TiO2 nanocomposites and their catalytic activity towards degradation of rhodamine B and reduction of Cr(VI). Ceram Int. 2015. 41(2): 2160. https://doi.org/10.1016/j.ceramint.2014.10.016
13. Schoolar R.B., Dixon J.R. Optical Constants of Lead Sulfide in the Fundamental Absorption Edge Region Phys. Rev. A. 1965. 137(2): 667.
14. Balamurugan C., Lee D.-W. A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B. 2014. 192: 414. https://doi.org/10.1016/j.snb.2013.10.085
15. Modafferi V., Panzera G., Donato A., Antonucci P.L., Cannilla C., Donato N., Spadaro D., Neri G. Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens. Actuators B. 2012. 163: 61. https://doi.org/10.1016/j.snb.2012.01.007
16. Deng J.N., Zhang R., Wang L.L., Lou Z., Zhang T. Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens. Actuators, B. 2015. 209: 449. https://doi.org/10.1016/j.snb.2014.11.141
17. Morrison S.R., Madou M.J. Chemical Sensing with Solid State Devices. (London: Academic Press, 1989).
18. Pengfeng Guo, Haibo Pan Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens. Actuators B. 2006. 114: 762. https://doi.org/10.1016/j.snb.2005.07.040
19. Mani G.K., Bosco J., Rayappan B. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B. 2013. 183: 459. https://doi.org/10.1016/j.snb.2013.03.132
20. Tulliani J.-M., Cavalieri A., Musso S., Sardella E. Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators B. 2011. 152: 144. https://doi.org/10.1016/j.snb.2010.11.057
21. Takao Y., Miyazaki K., Shimizu Y., Egashira M. High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes. J. Electrochem. Soc. 1994. 141: 1028. https://doi.org/10.1149/1.2054836
DOI: https://doi.org/10.15407/hftp08.01.098
Copyright (©) 2017 S. L. Prokopenko, G. M. Gunja, S. M. Makhno, P. P. Gorbyk
This work is licensed under a Creative Commons Attribution 4.0 International License.