Chemistry, Physics and Technology of Surface, 2018, 9 (1), 3-15.

Effects of methods and basis sets on calculation results using various solvation models



DOI: https://doi.org/10.15407/hftp09.01.003

V. M. Gun'ko

Abstract


Various quantum chemical approaches including ab initio, density functional theory (B3LYP, CAM-B3LYP,     ωB97X-D, M06HF) and semiempirical (PM7) methods with different basis sets and various solvation models (SMD, IEFPCM, COSMO), as well as a supermolecular approach, and the basis set superposition error (BSSE) corrections, used to analyze the solvation effects are compared for polar (water, ethanol, dimethylsulfoxide, acetonitrile, acetone), weakly polar (chloroform) and nonpolar (benzene, n-hexane, carbon tetrachloride) solvents per se and interacting with unmodified and modified silicas. The DFT methods give smaller errors in the DGs values than the PM7 method with various solvation models. For the molecular clusters with water alone or water with organics, the interaction energy decreases with enhanced amorphism of the systems. The supermolecular approach with PM7 gives worse results (in comparison to the experimental data) than those of SMD/PM7 or COSMO/PM7. An increase in the basis sets can give worse results than that at smaller ones because the parameters in the SMD model were calibrated using the experimental data and ab initio or DFT calculations of the same systems with relatively small basis sets.


Keywords


solvation effects; solvation models; quantum chemical methods; ab initio and DFT methods; semiempirical methods

Full Text:

PDF

References


1. Tapia O., Bertrán J. Solvent Effects and Chemical Reactivity. (New York: Kluwer Academic Publishers, 2000).

2. Canuto S. Solvation Effects on Molecules and Biomolecules. Computational Methods and Applications. (Dordrecht: Springer, 2008). https://doi.org/10.1007/978-1-4020-8270-2

3. Yaws C.L. Thermophysical Properties of Chemicals and Hydrocarbons. (New York: Norwich, William Andrew Inc., 2008).

4. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

5. Chaplin M. Water structure and science. http://www.lsbu.ac.uk/water/.

6. SchleyerP.v.R. Encyclopedia of Computational Chemistry. (New York: John Wiley & Sons, 1998).

7. Cramer C.J. Essentials of computational chemistry: theories and models. (Chichester, UK: John Wiley & Sons, Ltd, 2008).

8. Dziedzic J., Helal H.H., Skylaris C.-K., Mostofi A.A., Payne M.C. Minimal parameter implicit solvent model for ab initio electronic-structure calculations. EPL. 2011. 95(4): 43001. https://doi.org/10.1209/0295-5075/95/43001

9. Cramer C.J., Truhlar D.G. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev. 1999. 99(8): 2161. https://doi.org/10.1021/cr960149m

10. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n

11. Marenich A.V., Cramer C.J., Truhlar D.G. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J. Phys. Chem. B. 2009. 113(14): 4538. https://doi.org/10.1021/jp809094y

12. Stewart J.J.P. MOPAC 2016, Colorado Springs, CO: Stewart Computational Chemistry, USA, 2017. http://openmopac.net/.

13. Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chem. Phys. 2017. 483–484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007

14. Gun'ko V.M., Turov V.V., Gorbik P.P. Water at the Interfaces. (Kyiv: Naukova Dumka, 2009).

15. Turov V.V., Gun'ko V.M. Clustered Water and Ways of its Applications. (Kyiv: Naukova Dumka, 2011).

16. Gun'ko V.M., Turov V.V., Bogatyrev V.M., Zarko V.I., Leboda R., Goncharuk E.V., Novza A.A., Turov A.V., Chuiko A.A. Unusual properties of water at hydrophilic/hydrophobic interfaces. Adv. Colloid Interface Sci. 2005. 118(1–3): 125. https://doi.org/10.1016/j.cis.2005.07.003

17. Gun'ko V.M., Zarko V.I., Goncharuk E.V., Andriyko L.S., Turov V.V., Nychiporuk Y.M., Leboda R., Skubiszewska-Zięba J., Gabchak A.L., Osovskii V.D., Ptushinskii Y.G., Yurchenko G.R., Mishchuk O.A., Gorbik P.P., Pissis P., Blitz J.P. TSDC spectroscopy of relaxational and interfacial phenomena. Adv. Colloid Interface Sci. 2007. 131(1–2): 1. https://doi.org/10.1016/j.cis.2006.11.001

18. Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: Morphological, structural and adsorption characterization. Adv. Colloid Interface Sci. 2013. 187–188: 1. https://doi.org/10.1016/j.cis.2012.11.001

19. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003

20. Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413

21. Gun'ko V.M. Modeling of interfacial behavior of water and organics. J. Theor. Comput. Chem. 2013. 12(07): 1350059. https://doi.org/10.1142/S0219633613500594

22. Blitz J.P., Gun'ko V.M. Kinetics and mechanism of chemical reactions at silica surfaces. Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: Taylor & Francis, CRC Press, 2015). P. 3491.

23. Gun'ko V.M.,Nasiri R., Sazhin S.S. Effects of the surroundings and conformerisation of n-dodecane molecules on evaporation/condensation processes. J. Chem. Phys. 2015. 142(3): 034502. https://doi.org/10.1063/1.4905496

24. Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Marynin A.I., Ukrainets A.I., Charmas B., Skubiszewska-Zięba J., Blitz J.P. Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2017. 423: 855. https://doi.org/10.1016/j.apsusc.2017.06.207

25. Gun'ko V.M., Turov V.V., Schur D.V. Zarko V.I., Prykhod'ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chem. Phys. 2015. 459: 172. https://doi.org/10.1016/j.chemphys.2015.08.016

26. Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

27. Chai J.-D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008. 10(44): 6615. https://doi.org/10.1039/b810189b

28. Yang, K. Zheng J., Zhao Y., Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010. 132(16): 164117. https://doi.org/10.1063/1.3382342

29. Schmidt M.W., Baldridge K.K., Boatz J.A. Elbert S.T., Gordon M.S., Jensen J.H., Koseki Sh., Matsunaga N., Nguyen K.A., Su Sh., Windus T.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

30. Gordon M.S., Schmidt M.W. Theory and Applications of Computational Chemistry, the First Forty Years. (Amsterdam: Elsevier, 2005) P. 1167. https://doi.org/10.1016/B978-044451719-7/50084-6

31. Klamt A., Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993. 0: 799. https://doi.org/10.1039/P29930000799

32. Zhurko G.A., Zhurko D.A. Chemcraft (version 1.8, build 523, 2017). http://www.chemcraftprog.com.

33. Dennington R., Keith T., Millam J. GaussView, Version 5.09, Semichem Inc., Shawnee Mission KS, 2013.

34. Kirchnerova J., Cave G.C.B. The solubility of water in low-dielectric solvents. Can. J. Chem. 1976. 54(24): 3909. https://doi.org/10.1139/v76-562

35. Graziano G. Benzene solubility in water: A reassessment. Chem. Phys. Lett. 2006. 429(1–3): 114. https://doi.org/10.1016/j.cplett.2006.08.006




DOI: https://doi.org/10.15407/hftp09.01.003

Copyright (©) 2018 V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.