Supramolecular interactions of natural flavonoids with cationic surfactant ethonium in solutions and on silica surface
DOI: https://doi.org/10.15407/hftp09.01.092
Abstract
Quercetin and rutin have potent antioxidant and metal ion chelating capacity, possess various biological, biochemical and therapeutic activity, but their application is limited because of low solubility. Anticeptic cationic gemini surfactant ethonium (2-ethylene-bis-(N-dimethylcarbdecyloximethyl) ammonium dichloride) was considered to be a promising solubilizer for flavonoids.
The supramolecular interactions of quercetin and rutin with ethonium have been studied spectrophotometrically. The bathochromic shift of quercetin and rutin spectra in pre-micellar ethonium solutions testifies an increase in their polarity. Indeed, the calculated values of quercetin and rutin apparent dissociation constants in ethonium solutions are lower than that in water. In micellar solutions the flavonoid spectral characteristics and protolytic properties remain unchanged, whereas the solubility of quercetin and rutin raises 250 and 5 times, respectively. The binding constants of quercetin (lgKb = 3.71) and rutin (lgKb = 2.52) with ethonium are determined from the solubility data.
The formation of supramolecular complexes also causes the essential increase of quercetin and rutin adsorption on silica surface at рН > 5 both in pre-micellar and micellar ethonium solutions in similar ways. This allows us to assume that the structures of surface complexes formed by pre-micellar associates or micelles have no principal differences. The shape of the obtained pH-dependences of quercetin and rutin adsorption suggests that flavonoids as a part of ethonium supramolecular complexes adsorb on silica mainly through the ionic interactions between the positively charged nitrogen atoms and dissociated silanol groups. The results of physico-chemical study may be a base for the development a composition of new medicinal remedies.
Keywords
References
1. Andersen O.M., Markham K.R. Flavonoids. Chemistry, biochemistry and applications. (London, New York, Boca Raton: CRC Press, 2006).
2. Mashkovsky M.D. Medicinal products. (Moskow: Nova Volna, 2005). [in Russian].
3. Soobrattee M.A., Neergheen V.S., Luximon-Ramma A. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 2005. 579(1/2): 200. https://doi.org/10.1016/j.mrfmmm.2005.03.023
4. Stevenson D.E., Hurst R.D. Polyphenolic phytochemicals − just antioxidants or much more. Cell. Mol. Life Sci. 2007. 64(22): 2900. https://doi.org/10.1007/s00018-007-7237-1
5. Guardia T., Rotelli A.E., Juarez A.O., Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 2001. 56(9): 683. https://doi.org/10.1016/S0014-827X(01)01111-9
6. Scholz S.G., Williamson G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int. J. Vitam. Nutr. Res. 2007. 77(3): 224. https://doi.org/10.1024/0300-9831.77.3.224
7. Ross J.A., Kasum C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002. 22: 19. https://doi.org/10.1146/annurev.nutr.22.111401.144957
8. Mohort M.A., Danova I.V., Mislivets S.O. Pharmacodynamics of quercetin and its dosage forms. Journal of Drug Toxicology and Pharmacology. 2009. 6: 3. [in Ukrainian].
9. Klimov B.N., Shtykov S.N. Physico-Chemistry of Nanostructured Materials. (Saratov: Novyi Veter, 2009). [in Russian].
10. Mchedlov-Petrosyan N.O., Lebed A..V, Lebed V.I. Colloidal surfactants. (Kharkiv: V.Karazin KhNU, 2009). [in Russian].
11. Lipkovska N.A., Barvinchenko V.N., Fedyanina T.V., Rugal' A.A. Dependence of the solubility of natural flavonoids in water on the concentration of miramistin, polyvinylpyrrolidone and human serum albumin. Russ. J. Phys. Chem. A. 2014. 88(5): 881. https://doi.org/10.1134/S0036024414050161
12. Lipkovskaya N.A., Barvinchenko V.N., Fedyanina T.V., Rugal' A.A. Physicochemical properties of quercetin and rutin in aqueous solutions of decamethoxin antiseptic drug. Russ. J. Appl. Chem. 2014. 87(1): 40. https://doi.org/10.1134/S1070427214010054
13. Lipkovska N.A., Barvinchenko V.N., Fedyanina T.V., Rugal' A.A. Spectral and acid-base properties of hydroxyflavones in micellar solutions of cationic surfactants. J. Appl. Spectrosc. 2014. 81(4): 644. https://doi.org/10.1007/s10812-014-9983-9
14. Barvinchenko V.M., Lipkovska N.O., Fedyanina T.V., Pogorelyi V.K. Nanomaterials and Supramolecular Structures: Physics, Chemistry and Applications. (Dordrecht: Springer, 2009).
15. Barvinchenko V.N., Lipkovskaya N.A., Fedyanina T.V., Rugal' A.A. Effect of supramolecular interactions with cationic surfactants on adsorption of flavonoids on highly dispersed silica surface. Colloid J. 2014. 76(2): 139. https://doi.org/10.1134/S1061933X14010025
16. Chuiko A.A. Medical Chemistry and Clinical Application of Silicon Dioxide. (Kyiv: Nauk. Dumka, 2003). [in Russian].
17. Patent UA 85323 Gorbyk P.P., Barvinchenko V.M., Chepel L.I., Pogorelyi V.K., Fedyanina T.V. Medicinal product for the treatment of periodontal inflammatory diseases. 2009.
18. Holmberg K. Handbook of Applied Colloid and Surface Chemistry. (Chishester: Wiley, 2002).
19. Bernshteyn I.Ya., Kaminsky Yu.L. Spectrophotometric analysis in organic chemistry. (L.: Khimiya, 1986). [in Russian].
20. Agrawal P.M., Schneider H.J. Deprotonation induced 13 C NMR shifts in phenols and flavonoids. Tetrahedron Lett. 1983. 24(2): 177. https://doi.org/10.1016/S0040-4039(00)81359-3
21. Kitson T.M, Kitson K.E., Moore S.A. Interaction of sheep liver cytosolic aldehyde dehydrogenase with quercetin, resveratrol and diethylstilbestrol. Chem. Biol. Interact. 2001. 130–132(1–3): 57. https://doi.org/10.1016/S0009-2797(00)00222-2
22. Vodolazkaya N.A., Mchedlov-Petrosyan N.O. Acid-base equilibria of indicator dyes in organized solutions. (Kharkiv: V. Karazin KhNU, 2009). [in Russian].
23. Chemical information resources from the National Library of Medicine. http://sis.nlm.nih.gov/chemical.html
24. Tehrani-Bagha A.R., Singh R.G., Holmberg K. Solubilization of two organic dyes by cationic ester-containing gemini surfactants. J. Colloid Interf. Sci. 2012. 376(1): 112. https://doi.org/10.1016/j.jcis.2012.02.016
25. Tehrani-Bagha A.R., Singh R.G., Holmberg K. Solubilization of two organic water-insoluble dyes by anionic, cationic and nonionic surfactants. Colloid Surf. A. 2013. 417: 133. https://doi.org/10.1016/j.colsurfa.2012.10.006
26. Bergström L.M., Tehrani-Bagha A.R., Nagy G. Growth Behavior, Geometrical Shape, and Second CMC of Micelles Formed by Cationic Gemini Esterquat Surfactants. Langmuir. 2015. 31(16): 4644. https://doi.org/10.1021/acs.langmuir.5b00742
27. Yatsimirsky K.B., Osipov A.P., Martinek K., Berezin I.V. Effect of surface-active substances on the kinetics of reactions in aqueous solution. Colloid. J. 1975. 37(3): 526. [in Russian].
28. Kazakova O.A., Gun'ko V.M., Lipkovskaya N.A., Voronin E.F., Pogorelyi V.K. Interaction of quercetin with highly dispersed silica in aqueous suspensions. Colloid J. 64(4): 412. [in Russian]. https://doi.org/10.1023/A:1016807717891
29. Vlasova N.N. Comparison of models of complexation on the surface for the quantitative description of the acid properties of highly dispersed silica. Chemistry, physics and technology of surface: Interd. Col. scientific papers. 2008. 14: 6.
30. Davidenko N.K., Shevchenko N.M., Bogomaz V.I., Vlasova N.N. Adsorption of ethonium on the surface of highly dispersed silica. J. Phys. Chem. 1992. 66(10): 2778.
DOI: https://doi.org/10.15407/hftp09.01.092
Copyright (©) 2018 N. O. Lipkovska, V. M. Barvinchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.