Chemistry, Physics and Technology of Surface, 2018, 9 (2), 107-123.

Interfacial behavior of methane and organic solvents with low freezing points upon interaction with hydrophilic and hydrophobic nanosilicas



DOI: https://doi.org/10.15407/hftp09.02.107

V. M. Gun'ko, V. V. Turov, T. V. Krupska

Abstract


Phase state features of adsorbed substance vs. temperature are often unknown or poorly defined due to strong effects of confined space in pores onto bound compounds. The adsorption theory considers that on a surface or in pores of adsorbents, adsorbate fluid forms structures with the density intermediate between ones of a gas and a liquid. The aim of the work was to study possibility for adsorbed substances to transform into solid state at temperature higher than freezing point. Solvent (acetone and ethanol) adsorption onto hydro-compacted nanosilica A-300 and its blend with hydrophobic AM1 (dimethyldichlorosilane hydrophobized A-300), methane adsorption onto hydrated (h = 0.1 g/g) silicas, and water behavior vs. temperature were analyzed using 1H NMR spectroscopy, cryoporometry, and quantum chemistry. A fraction of organics bound to silicas is immobile at temperatures higher than its freezing point since it does not contribute to 1H NMR spectra of static samples. Methane signal increases with temperature because of enhanced molecular mobility and structure changes in mobile water clusters bound in voids between silica nanoparticles in their aggregates. Stronger compaction of A-300 than that of stirred A-300/AM1 (due to a negative effect of AM1 nanoparticles preventing formation of tight contacts between A-300 nanoparticles) leads to a decrease in adsorption of methane onto dense A-300 alone. Stronger stirring of the A-300/AM1 blend (at h = 0.1 g/g) leads to enhanced adsorption of methane. This effect is due to enhanced mobility of the methane molecules with T, because at low temperatures these molecules are practically immobile in voids between nanoparticles and frozen or poorly mobile water clusters, which partially fill narrow pores (voids) in NPNP aggregates and agglomerates.


Keywords


fumed silica; hydrophobized nanosilica; bound water organization; methane adsorption; organic solvent adsorption; low-temperature 1H NMR spectroscopy

Full Text:

PDF

References


1. Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th Edition. (New York: Wiley, 1997).

2. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1982).

3. Parfitt G.D., Rochester C.H. Adsorption from Solution at the Solid/Liquid Interface. (London: Academic Press, 1983).

4. Lambert R.M., Pacchioni G. Chemisorption and Reactivity on Supported Clusters and Thin Films. (Kluwer Academic Publishers, 1997). https://doi.org/10.1007/978-94-015-8911-6

5. Chattoray D.K., Birdi K.S. Adsorption and the Gibbs Surface Excess. (New York: Plenum Press, 1984). https://doi.org/10.1007/978-1-4615-8333-2

6. Swenson J., Elamin K., Jansson H., Kittaka S. Why is there no clear glass transition of confined water? Chem. Phys. 2013. 424: 20. https://doi.org/10.1016/j.chemphys.2012.11.014

7. Rice S.A. Structure in confined colloid suspensions. Chem. Phys. Lett. 2009. 479(1–3): 1. https://doi.org/10.1016/j.cplett.2009.07.059

8. Mahadevan T., Kojic M., Ferrari M., Ziemys A. Mechanisms of reduced solute diffusivity at nanoconfined solid–liquid interface. Chem. Phys. 2013. 421: 15. https://doi.org/10.1016/j.chemphys.2013.05.010

9. Jagadeesh B., Prabhakar A., Demco D.E., Buda A., Blümich B. Surface induced molecular dynamics of thin lipid films confined to submicron cavities: A 1H multiple-quantum NMR study. Chem. Phys. Lett. 2005. 404(1–3): 177. https://doi.org/10.1016/j.cplett.2005.01.073

10. Guégan R., Morineau D., Alba-Simionesco C. Interfacial structure of an H-bonding liquid confined into silica nanopore with surface silanols. Chem. Phys. 2005. 317(2–3): 236. https://doi.org/10.1016/j.chemphys.2005.04.034

11. Gordillo M.C., Martí J. Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 2000. 329(5–6): 341. https://doi.org/10.1016/S0009-2614(00)01032-0

12. Dore J. Structural studies of water in confined geometry by neutron diffraction. Chem. Phys. 2000. 258(2–3): 327. https://doi.org/10.1016/S0301-0104(00)00208-1

13. Soper A.K. Radical re-appraisal of water structure in hydrophilic confinement. Chem. Phys. Lett. 2013. 590: 1. https://doi.org/10.1016/j.cplett.2013.10.075

14. Hodgson A., Haq S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009. 64(9): 381. https://doi.org/10.1016/j.surfrep.2009.07.001

15. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

16. Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).

17. Bergna H.E. Colloidal Silica: Fundamentals and Applications. (Salisbury: Taylor & Francis LLC, 2005).

18. Hubbard A.T. Encyclopedia of Surface and Colloid Science. (New York, Marcel Dekker, 2002).

19. Gilli G., Gilli P. The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. (Oxford: Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780199558964.001.0001

20. Chaplin M. Water Structure and Science. http://www.lsbu.ac.uk/water/. 11 July, 2017.

21. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461: 1. https://doi.org/10.1016/j.physrep.2008.02.001

22. Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Prog. Nucl. Magn. Reson. Spectrosc. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001

23. Aksnes D.W., Forl K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR. Phys. Chem. Chem. Phys. 2001. 3: 3203. https://doi.org/10.1039/b103228n

24. Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).

25. Gun'ko V.M., Sheeran D.J., Augustine S.M., Blitz J.P. Structural and energetic characteristics of silicas modified by organosilicon compounds. J. Colloid Interface Sci. 2002. 249(1): 123. https://doi.org/10.1006/jcis.2002.8259

26. Wang L., Yu Q. Methane adsorption on porous nano-silica in the presence of water: An experimental and ab initio study. J. Colloid Interface Sci. 2016. 467: 60. https://doi.org/10.1016/j.jcis.2015.09.061

27. Sizova A.A., Sizov V. V., Brodskaya E.N. Adsorption of CO2/CH4 and CO2/N2 mixtures in SBA-15 and CMK-5 in the presence of water: A computer simulation study. Colloids Surf. A. 2015. 474: 76. https://doi.org/10.1016/j.colsurfa.2015.03.008

28. Liu X., Li J., Zhou L. Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve. Chem. Phys. Lett. 2005. 415(4–6): 198. https://doi.org/10.1016/j.cplett.2005.09.009

29. Govindaraj V., Mech D., Pandey G., Nagarajan R., Sangwai J.S. Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water. J. Nat. Gas Sci. Eng. 2015. 26: 810. https://doi.org/10.1016/j.jngse.2015.07.011

30. He P., Liu H., Zhu J., Li Y., Huang S., Wang P., Tian H. Tests of excess entropy scaling laws for diffusion of methane in silica nanopores. Chem. Phys. Lett. 2012. 535: 84 https://doi.org/10.1016/j.cplett.2012.03.047

31. Takaba H., Yamamoto A., Hayamizu K., Oumi Y. Dependence of the diffusion coefficients of methane in silicalite on diffusion distance as investigated by 1H PFG NMR. Chem. Phys. Lett. 2004. 393(1–3): 87. https://doi.org/10.1016/j.cplett.2004.05.086

32. Lloyd P., Berg O., Thiyagarajan P., Trouw F.R., Chronister E.L. Methane dynamics in porous xerogels characterized by small-angle and quasielastic neutron scattering. Chem. Phys. Lett. 2000. 328(1–2): 203. https://doi.org/10.1016/S0009-2614(00)00910-6

33. Brovchenko I., Oleinikova A. Interfacial and Confined Water. (Amsterdam: Elsevier, 2008).

34. Drioli E., Giorno L. Comprehensive Membrane Science and Engineering. (Amsterdam: Elsevier, 2010).

35. Basile A., Figoli A., Khayet M. Pervaporation, Vapour Permeation and Membrane Distillation. Principles and Applications. Woodhead Publishing Series in Energy: N 77. (Amsterdam: Elsevier, 2015).

36. Lipkowski J. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Comprehensive Supramolecular Chemistry II. (Amsterdam: Elsevier, 2017) 89.

37. Israelachvili J.N. Intermolecular and Surface Forces. Third Edition. (Amsterdam: Elsevier, 2011).

38. Zolfaghari A., Dehghanpour H., Holyk J. Water sorption behaviour of gas shales: I. Role of clays. Int. J. Coal Geol. 2017. 179: 130. https://doi.org/10.1016/j.coal.2017.05.008

39. Basic Characteristics of Aerosil. Technical Bulletin Pigments. N 11. Degussa AG, Hanau, 1997.

40. Kulkarni P., Baron P.A., Willeke K. Aerosol Measurement: Principles, Techniques, and Applications. Third Edition. (New York: John Wiley & Sons, 2011). https://doi.org/10.1002/9781118001684

41. Büchel K.H., Moretto H.-H., Woditsch P. Industrial Inorganic Chemistry. (Weinheim: Wiley-VCH Verlag GmbH, 2000). https://doi.org/10.1002/9783527613328

42. Auner N., Weis J. Organosilicon Chemistry VI. (Weinheim: Wiley-VCH Verlag GmbH, 2005). https://doi.org/10.1002/9783527618224

43. Piemonte V., De Falco M., Basile A. Sustainable Development in Chemical Engineering – Innovative Technologies. First Edition. (Chichester, UK: John Wiley & Sons, 2013). https://doi.org/10.1002/9781118629703

44. Camenzind A., Caseri W.R., Pratsinis S.E. Flame-made nanoparticles for nanocomposites. Nano Today. 2010. 5(1): 48. https://doi.org/10.1016/j.nantod.2009.12.007

45. Gun'ko V.M., Zarko V.I., Chuikov B.A., Dudnik V.V., Ptushinskii Yu.G., Voronin E.F., Pakhlov E.M., Chuiko A.A. Temperature-programmed desorption of water from fumed silica, silica/titania, and silica/alumina. Int. J. Mass Spectrom. Ion Processes. 1998. 172(3): 161 https://doi.org/10.1016/S0168-1176(97)00269-3

46. Gun'ko V.M., Turov V.V., Bogatyrev V.M., Petin A.Y., Turov A.V., Trachevskyi V.V., Blitz J.P. The influence of pre-adsorbed water on adsorption of methane on fumed and nanoporous silicas. Appl. Surf. Sci. 2011. 258(4): 1306. https://doi.org/10.1016/j.apsusc.2011.08.126

47. Gun'ko V.M., Turov V.V., Turov A.V. Hydrogen peroxide–water mixture bound to nanostructured silica. Chem. Phys. Lett. 2012. 531: 132. https://doi.org/10.1016/j.cplett.2012.01.090

48. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery, Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

49. Chai J.-D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008. 10(44): 6615. https://doi.org/10.1039/b810189b

50. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n

51. Stewart J.J.P. MOPAC2016, Stewart Computational Chemistry, web: HTTP://OpenMOPAC.net, 2017.

52. Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Mod. 2013. 19(1): 1. https://doi.org/10.1007/s00894-012-1667-x

53. Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Oranska O.I., Palyanytsya B.B., Remez O.S., Nychiporuk Y.M., Ptushinskii Y.G., Leboda R., Skubiszewska-Zięba J. Cryogelation of individual and complex nanooxides under different conditions. Colloids Surf. A. 2014. 456: 261. https://doi.org/10.1016/j.colsurfa.2014.05.045

54. Gun'ko V.M., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Remez O.S., Charmas B., Skubiszewska-Zięba J. Low-temperature high-pressure cryogelation of nanooxides. J. Sol-Gel Sci. Technol. 2015. 74(1): 45. https://doi.org/10.1007/s10971-014-3575-2

55. Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci. 2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055

56. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003




DOI: https://doi.org/10.15407/hftp09.02.107

Copyright (©) 2018 V. M. Gun'ko, V. V. Turov, T. V. Krupska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.