Relaxation of excess minority carrier distribution in macroporous silicon
DOI: https://doi.org/10.15407/hftp09.02.158
Abstract
Relaxation of the excess minority carrier distribution in macroporous silicon structure was calculated using the finite difference method. The initial distribution of the excess minority carriers has two maxima after carrier generation by electromagnetic wavelength 0.95 μm with small absorption depth. The first maximum of the initial distribution function is in macroporous layer, the second one is in monocrystalline substrate. Surface recombination leads to the diffusion of excess charge carriers to recombination centers and creates the non-homogeneity of the excess charge carrier distribution. A rapid maximum decrease of the excess carrier distribution function in a macroporous layer and near the boundary of a macroporous layer and monocrystalline substrate is found. The slow decrease of the distribution function in a monocrystalline substrate is evaluated. We observed one maximum of the excess minority carrier distribution after homogeneous carrier generation by electromagnetic wavelength 1.05 μm with big absorption depth. The rate of change in the concentration of excess minority carriers decreases in time in macroporous silicon layer due to high recombination and increases due to diffusion to the surface of silicon substrate after generation by the electromagnetic wave 0.95 μm with small absorption depth. The rate of change in the concentration of excess minority carriers decreases in time in the entire structure after generation by the electromagnetic wave 1.05 μm with big absorption depth and small non-homogeneity.
Keywords
References
1. Barillaro G., Bruschi P., Pieri F., Strambini L.M. CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys. Status Solidi A. 2007. 204(5): 1423. https://doi.org/10.1002/pssa.200674370
2. Cardador D., Vega D., Segura T., Trifonov A., Rodríguez A. Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications. Photonics Nanostruct. Fundam. Appl. 2017. 25: 46. https://doi.org/10.1016/j.photonics.2017.04.005
3. Barillaro G., Strambini L.M. An integrated CMOS sensing chip for NO2 detection. Sens. Actuators. B. 2008. 134(2): 585. https://doi.org/10.1016/j.snb.2008.05.044
4. Ernst M., Brendel R., Ferre R., Harder N.‐P. Thin macroporous silicon heterojunction solar cells. Phys. Status Solidi RRL. 2012. 6(5): 187. https://doi.org/10.1002/pssr.201206113
5. Ernst M., Brendel R. Macroporous silicon solar cells with an epitaxial emitter. IEEE J. Photovoltaics. 2013. 3(2): 723. https://doi.org/10.1109/JPHOTOV.2013.2247094
6. Onyshchenko V.F., Karachevtseva L.A., Lytvynenko O.O., Plakhotnyuk M.M., Stronska O.Y. Effective lifetime of minority carriers in black silicon nano-textured by cones and pyramids. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2017. 20(3): 325. https://doi.org/10.15407/spqeo20.03.325
7. Selj J.H., Marstein E., Thogersen A. et al. Porous silicon multilayer antireflection coating for solar cells; process considerations. Phys. Status Solidi C. 2011. 8(6): 1860. https://doi.org/10.1002/pssc.201000033
8. Mendoza-Aguero N., Agarwal V., Villafan-Vidales H.I., Campos-Alvarez J. and Sebastian P.J. A heterojunction based on macro-porous silicon and zinc oxide for solar cell application. J. New Mater. Electrochem. Syst. 2015. 18(4): 225.
9. Treideris M., Bukauskas V., Rėza A., Šimkienė I., Šetkus A., Maneikis A., Strazdienė V. Macroporous Silicon structures for light harvesting. Mater. Sci. E. 2015. 21(1): 3. https://doi.org/10.5755/j01.ms.21.1.5725
10. Loget G., Vacher A., Fabre B., Gouttefangeas F., Joanny L. and Dorcet V. Enhancing light trapping of macroporous silicon by alkaline etching: application for the fabrication of black Si nanospike arrays. Mater. Chem. Front. 2017. 9: 1881. https://doi.org/10.1039/C7QM00191F
11. Onyshchenko V.F., Karachevtseva L.A. Conductivity and photoconductivity of two-dimensional macroporous silicon structures. Ukr. J. Phys. 2013. 58(9): 846. https://doi.org/10.15407/ujpe58.09.0846
12. Ernst M., Brendel R. Modeling effective carrier lifetimes of passivated macroporous silicon layers. Sol. Energy Mater. Sol. Cells. 2011. 95(4): 1197. https://doi.org/10.1016/j.solmat.2011.01.017
13. Onyshchenko V.F., Karachevtseva L.A. Effective minority carrier lifetime and distribution of steady-state excess minority carriers in macroporous silicon. Him. Fiz. Tehnol. Poverhni. 2017. 8(3): 322. https://doi.org/10.15407/hftp08.03.322
14. Onyshchenko V.F. Distribution of non-equilibrium charge carriers in macroporous silicon structure under conditions of their homogeneous generation over the simple bulk. Optoelectronics and Semiconductor Technique. 2015. 50: 125. [in Ukrainian].
15. Onyshchenko V.F. Distribution of photocarriers in macroporous silicon in case of the spatially inhomogeneous generation of charge-carriers. Optoelectronics and Semiconductor Technique. 2016. 51: 158. [in Ukrainian].
16. Karachevtseva L.A., Onyshchenko V.F., Sachenko A.V. Photoconductivity relaxation and electron transport in macroporous silicon structures. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2017. 20(4): 475. https://doi.org/10.15407/spqeo20.04.475
17. Deinega A., John S. Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells. Comput. Phys. Commun. 2012. 183(10): 2128. https://doi.org/10.1016/j.cpc.2012.05.016
18. Green M.A., Keevers M.J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 1995. 3(3): 189. https://doi.org/10.1002/pip.4670030303
DOI: https://doi.org/10.15407/hftp09.02.158
Copyright (©) 2018 L. A. Karachevtseva, V. F. Onyshchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.