Chemistry, Physics and Technology of Surface, 2018, 9 (2), 176-189.

Synthesis and properties of magnetic nanostructures with carbonized surface



DOI: https://doi.org/10.15407/hftp09.02.176

P. P. Gorbyk, N. V. Kusyak, A. L. Petranovskaya, E. I. Oranskaya, N. V. Abramov, N. M. Opanashchuk

Abstract


Aim of the research. The paper aims to synthesize magnetically sensitive carbonated magnetite – based composites.

Methods. UV-Vis spectroscopy, X-ray powder diffraction (XRD), Infrared spectroscopy with Fourier accumulations, low temperature desorption of nitrogen, adsorption of methylene blue.

Results. A technique of carbonization of nanoparticles surface of magnetite and magnetite/SiO2 nanocomposite is developed. The optimal technological parameters of carbonization and the organic chemical for impregnation (i.e. polygel CS (Carbomer 934) are defined. The processes of Methylene Blue adsorption  on nanostructures surface were investigated, the adsorption capacity dependence on number of carbon in nanocomposites surface is defined. With the use of X-ray powder diffraction analysis it is shown that during the carbonization the phase of magnetite is preserved and the phase of γ-Fe2O3 is partially formed, which does not affect the magnetic properties of the carbonized samples. The processes of Methylene Blue adsorption were investigated, it is shown that nanocomposite adsorption capacity increases with an increase of carbon in the surface and is dependent on the organic chemical used for the composite impregnation. The highest rate of adsorption capacity A = 24.9 mg/g is achieved using Fe3O4/С nanocomposite for Carbomer 934 impregnation. It is found that under the defined conditions the surface of carbonized nanocomposites Fe3O4/SiO2/С could include carbon and silica «islets». Such kind of structure of surface could be actual from the point of view of hydrophilic and hydrophobic balance and the increase of functional capacities. Coercivity, specific magnetization of saturation, remanent specific magnetization and relative remanent magnetization of synthesized ensembles nanoparticles Fe3O4 and nanocomposites Fe3O4/С, Fe3O4/Сole.acid, Fe3O4/ССS, Fe3O4/SiO2/ССS are experimentally assessed. The research results could be used in creation of new magnetically managed tools for sufficient drug delivery and of different functionality sorption materials.


Keywords


carbonization; carbon coatings; surface; magnetite; magnetically sensitive nanocomposites; adsorption

Full Text:

PDF (Українська)

References


1. Peredery M.A, Noskova Yu.A., Karasyova M.S, Konovalov P.N. New carbon sorbents for priority areas of application. Solid Fuel Chemistry. 2009. 6: 36. [in Russian].

2. Nikolaev V.G, Mikhalovsky S.V, Gurina N.M. Modern enterosorbents and mechanisms of their action. Efferent therapy. 2005. 11(4): 3. [in Russian].

3. Yang K., Zhu L., Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 2006. 40(6): 1855. https://doi.org/10.1021/es052208w

4. Belyaeva O.A., Semenov V.G. Application of enterosorption in complex therapy of liver diseases. Pharmacy. 2003. 30: 7. [in Russian].

5. Tarasevich Yu.I. Carbon-mineral sorbents: their production, properties and application in water treatment. Water Chemistry and Technology. 1989. 11(9): 789. [in Russian].

6. Yan-Hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding, Cailu Xu, Dehai Wu. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon. 2003. 41(5): 1057. https://doi.org/10.1016/S0008-6223(02)00440-2

7. Gunko V.M., Zarko V.I., Turov B.V., Goncharuk E.V. Regularities of the behavior of nanomaterials in different media, caused by the structure of the surface and the morphology of particles. In: Physicochemistry of nanomaterials and supramolecular structures. V. 1. (Kiyv: Naukova Dumka, 2007) 157. [in Russian].

8. Gogots E.G., Tishchenko N.V., Gogotsi A.G, Protsenko L.S., Buddhine O.N. Comparison of adsorptive properties of carbon materials depending on method of their synthesis. Material Science of Nanostructures. 2015. 2–4: 92. [in Russian].

9. Gorbyk P.P, Turov V.V. Nanomaterials and nanocomposites in medicine, biology, ecology. (Kyiv: Naukova Dumka, 2011). [in Russian].

10. Mischenko V.M., Cartel M.T., Lutsenko V.A., Nikolaichuk A.D., Kusyak N.V., Korduban O.M., Gorbyk P.P. Magnetosensitive adsorbents based on activated carbon: synthesis and properties. Surface. 2010. 2(17): 276. [in Ukrainian].

11. Turanska S.P., Kaminsky A.N., Kusjak N.V., Turov V.V., Gorbyk P.P. Synthesis, properties and application of magnetodirected adsorbents. Surface. 2012. 4(19): 266. [in Russian].

12. Mischenko V.M., Gorbyk P.P., Mahno S.M., Mazurkevich R.V., Abramov M.V. Synthesis and magnetic properties of composites type of carbon nanotube/magnetite and activated carbon/magnetite. Surface. 2015. 7(22): 227. [in Ukrainian].

13. Abramov M.V., Gorbyk P.P., Bohatyryov V.M. Magnetic properties of carbon-nickel nanocomposites. Surface. 2016. 8(23): 223. [in Ukrainian].

14. Gorbyk P.P. Nanocomposites with functions of biomedical nanorobots: synthesis, properties, application. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(2): 323. [in Russian].

15. Semko L.S, Gorbyk P.P., Storozhuk L.P., Dzyubenko L.S., Dubrovin I.V., Oranska O.I. The modifiding of magnetite by silica. Physics and Chemistry of Solid State. 2007. 8(3): 526. [in Ukrainian].

16. Semko L.S., Gorbyk P.P., Dubrovin I.V., Abramov N.V., Sirenko O.G., Usov D.G., Oranska O.I. Reception and study of laminate nanocomposites magnetite/silicon dioxide. Ukrainian Chemical Journal. 2009. 75(1): 37. [in Ukrainian].

17. Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Magnetosensitive Nanocomposites Based on Cisplatin and Doxorubicin for Application in Oncology. Horizons in World Physics. 2017. 293: 1.

18. European Pharmacopoeia. 2001. Carbomers: 306.

19. Borisenko N.V., Bogatyrev V.M., Dubrovin I.V., Abramov N.V., Gaeva M.V., Gorbyk P.P. Synthesis and properties of magnetosensitive nanocomposites based on iron oxide and silicon. In: Physicochemistry of nanomaterials and supramolecular structures. V. 1. (Kiyv: Naukova Dumka, 2007) 394. [in Russian].

20. Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5(3): 275. https://doi.org/10.1007/s40097-015-0159-9

21. Interstate Standard (GOST 4453-74). Active adsorpting powder charcoal. Specifications. http://docs.cntd.ru/document/gost-4453-74.

22. Keltsev N.V. Fundamentals of adsorption technology. (Moscow: Chemistry, 1984). [in Russian].

23. Parfitt G.D., Rochester C.H. Adsorption from solution at the solid/liquid interface. (London, New York: Academic Press, 1983).

24. Abramov N.V., Turanska S.P., Kusyak A.P., Petranovska A.L., Gorbyk P.P. Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic liquids based on them. J. Nanostruct. Chem. 2016. 6(3): 223. https://doi.org/10.1007/s40097-016-0196-z




DOI: https://doi.org/10.15407/hftp09.02.176

Copyright (©) 2018 P. P. Gorbyk, N. V. Kusyak, A. L. Petranovskaya, E. I. Oranskaya, N. V. Abramov, N. M. Opanashchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.