Chemistry, Physics and Technology of Surface, 2018, 9 (4), 317-340.

Various methods to describe the morphological and textural characteristics of various materials



DOI: https://doi.org/10.15407/hftp09.04.317

V. M. Gun'ko

Abstract


The aim of this study was to compare a variety of methods to describe the textural characteristics of various materials. Several ways could be used to describe the morphological and textural characteristics of various materials in detail such as: (i) adsorption-desorption of low-molecular weight probe compounds (N2, CO2, Ar, C6H6, H2O, etc.) in the gaseous (vapor) phase with increasing-decreasing pressure; (ii) adsorption of low- or high-molecular weight compounds from liquid solutions with increasing concentration of a solute; (iii) small angle X-ray scattering (SAXS) or small angle neutron scattering (SANS); (iv) quantitative analysis of images recorded using TEM, SEM, AFM, CLSM, etc.; (v) thermoporometry based on DSC or TG measurements with decreasing-increasing temperature; (vi) cryoporometry based on NMR spectroscopy measurements vs. temperature; and (vii) relaxometry based on NMR spectroscopy and thermally stimulated depolarization current measurements. There are several reasons of the use of mentioned above methods in parallel. For example, a material, which is strongly hydrated in native state, can strongly change the texture upon drying; thus, it should be studied in both states. Various adsorbates can penetrate into different pores or differently fill pores of different sizes that should be taken into account upon the analyses of various data. There are accessible and inaccessible pores (such as closed or too narrow for used adsorbate molecules), but SAXS can give information on all pores in contrast to the adsorption methods. Thus, the larger the number of applied methods, the more comprehensive the morphological and textural characterization of the adsorbents, and this is clearly shown below.


Keywords


textural characteristics; adsorption; cryoporometry; relaxometry; thermoporometry; SAXS; FTIR

Full Text:

PDF

References


1. Adamson A.W., Gast A.P. Physical Chemistry of Surface. Sixth edition. (New York: Wiley, 1997).

2. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1982).

3. Brumberger H. (Ed.) Small Angle X-ray Scattering. (New York: Gordon & Breach, 1965).

4. Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).

5. Bergna H.E. (Ed.) Colloidal Silica: Fundamentals and Applications. (Boca Raton: Taylor & Francis LLC, 2005).

6. Legrand A.P. (Ed.) The Surface Properties of Silicas. (New York: Wiley, 1998).

7. Hastie J.W. (Ed.) Materials Chemistry at High Temperatures. V. 1, Characterization, V. 2, Processing and Performance. (Clifton, NJ: Humana Press, 1990).

8. Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).

9. Kimmich R. NMR Tomography, Diffusometry, Relaxometry. (Heidelberg: Springer, 1997).

10. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001

11. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

12. Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci. 2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055

13. Gun'ko V.M., Mikhalovsky S.V. Evaluation of slitlike porosity of carbon adsorbents. Carbon. 2004. 42(4): 843. https://doi.org/10.1016/j.carbon.2004.01.059

14. Gun'ko V.M., Meikle S.T., Kozynchenko O.P., Tennison S.R., Ehrburger-Dolle F., Morfin I., Mikhalovsky S.V. Comparative characterization of carbon and polymer adsorbents by SAXS and nitrogen adsorption methods. J. Phys. Chem. C. 2011. 115(21): 10727. https://doi.org/10.1021/jp201835r

15. Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: Morphological, structural and adsorption characterization. Adv. Colloid Interface Sci. 2013. 187–188: 1. https://doi.org/10.1016/j.cis.2012.11.001

16. Gun'ko V.M., Goncharuk O.V., Goworek J. Evaporation of polar and nonpolar liquids from silica gels and fumed silica. Colloids Surf. A. 2015. 474: 52. https://doi.org/10.1016/j.colsurfa.2015.03.007

17. Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413

18. Gun'ko V.M., Pakhlov E.M., Skubiszewska-Zięba J., Blitz J.P. Infrared spectroscopy as a tool for textural and structural characterization of individual and complex fumed oxides. Vib. Spectrosc. 2017. 88: 56. https://doi.org/10.1016/j.vibspec.2016.11.003

19. Pujari P.K., Sen D., Amarendra G., Abhaya S., Pandey A.K., Dutta D., Mazumder S. Study of pore structure in grafted polymer membranes using slow positron beam and small-angle X-ray scattering techniques. Nucl. Instrum. Methods Phys. Res., Sect. B. 2007. 254(2): 278.

20. Dieudonné Ph., Hafidi A.A., Delord P., Phalippou J. Transformation of nanostructure of silica gels during drying. J. Non-Cryst. Solids. 2000. 262(1–3): 155. https://doi.org/10.1016/S0022-3093(99)00687-0

21. Fairén-Jiménez D., Carrasco-Marín F., Djurado D., Bley F., Ehrburger-Dolle F., Moreno-Castilla C. Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. J. Phys. Chem. B. 2006. 110(17): 8681. https://doi.org/10.1021/jp055992f

22. Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Prog. Nucl. Magn. Reson. Spectrosc. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001

23. Aksnes D.W., Forl K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR. Phys. Chem. Chem. Phys. 2001. 3: 3203. https://doi.org/10.1039/b103228n

24. Muniz W.B., Ramos F.M., de Campos Velho H.F. Entropy- and Tikhonov-based regularization techniques applied to the backwards heat equation. Comput. Math. Appl. 2000. 40(8–9): 1071. https://doi.org/10.1016/S0898-1221(00)85017-8

25. Provencher S.W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982. 27(3): 213. https://doi.org/10.1016/0010-4655(82)90173-4

26. Gun'ko V.M., Turov V.V., Turov A.V., Zarko V.I., Gerda V.I., Yanishpolskii V.V., Berezovska I.S., Tertykh V.A. Behaviour of pure water and water mixture with benzene or chloroform adsorbed onto ordered mesoporous silicas. Centr. Eur. J. Chem. 2007. 5(2): 420.

27. Gun'ko V.M., Krupska T.V., Andriyko L.S., KlymenkoN.Yu., Siora I.V., Novikova O.A., Marynin A.I., Ukrainets A.I., Charmas B., Shekhunova S.B., Turov V.V. Bonding of doxorubicin to nanosilica and human serum albumin in various media. J. Colloid Interface Sci. 2018. 513: 809. https://doi.org/10.1016/j.jcis.2017.12.001

28. Turov V.V., Gun'ko V.M., Pakhlov E.M., Krupska T.V., Tsapko M.D., Charmas B., Kartel M.T. Influence of hydrophobic nanosilica and hydrophobic medium on water bound in hydrophilic components of complex systems. Colloids Surf. A. 2018. 552: 39. https://doi.org/10.1016/j.colsurfa.2018.05.017

29. Gun'ko V.M., Zarko V.I., Goncharuk E.V., Andriyko L.S., Turov V.V., Nychiporuk Y.M., Leboda R., Skubiszewska-Zięba J., Gabchak A.L., Osovskii V.D., Ptushinskii Y.G., Yurchenko G.R., Mishchuk O.A., Gorbik P.P., Pissis P., Blitz J.P. TSDC spectroscopy of relaxational and interfacial phenomena. Adv. Colloid Interface Sci. 2007. 131(1–2): 1. https://doi.org/10.1016/j.cis.2006.11.001

30. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk E.V., Turova A.A. Regularities in the behaviour of water confined in adsorbents and bioobjects studied by 1H NMR spectroscopy and TSDC methods at low temperatures. Colloids Surf. A. 2009. 336: 147. https://doi.org/10.1016/j.colsurfa.2008.11.043

31. Hay J.N., Laity P.R. Observations of water migration during thermoporometry studies of cellulose films. Polymer. 2000. 41(16): 6171. https://doi.org/10.1016/S0032-3861(99)00828-9

32. Landry M.R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim. Acta. 2005. 433(1–2): 27. https://doi.org/10.1016/j.tca.2005.02.015

33. Weber J., Bergström L. Mesoporous hydrogels: revealing reversible porosity by cryoporometry, X-ray scattering, and gas adsorption. Langmuir. 2010. 26(12): 10158. https://doi.org/10.1021/la100290j

34. Rohman G., Lauprêtre F., Boileau S., Guérin P., Grande D. Poly(D,L-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials. Polymer. 2007. 48(24): 7017. https://doi.org/10.1016/j.polymer.2007.09.044

35. Turov V.V., Gun'ko V.M., Zarko V.I., Goncharuk O.V., Krupska T.V., Turov A.V., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range. Langmuir. 2013. 29(13): 4303. https://doi.org/10.1021/la400392h

36. Goworek J., Stefaniak W., Zgrajka W. Measuring porosity of polymeric adsorbents by temperature programmed desorption of liquids. Mater. Chem. Phys. 1999. 59(2): 149. https://doi.org/10.1016/S0254-0584(99)00017-6

37. Goworek J., Stefaniak W., Prudaczuk M. The influence of polarity of liquids on the parameters characterizing the porosity of silica gels estimated by thermogravimetric analysis. Thermochim. Acta. 2001. 379(1): 117. https://doi.org/10.1016/S0040-6031(01)00610-4

38. Gun'ko V.M., Kozynchenko O.P., Tennison S.R., Leboda R., Skubiszewska-Zięba J., Mikhalovsky S.V. Comparative study of nanopores in activated carbons by HRTEM and adsorption methods. Carbon. 2012. 50(9): 3146. https://doi.org/10.1016/j.carbon.2011.10.009

39. Gun'ko V.M., Turov V.V., Kozynchenko O.P., Nikolaev V.G., Tennison S.R., Meikle S.T., Snezhkova E.A., Sidorenko A.S., Ehrburger-Dolle F., Morfin I., Klymchuk D.O., Mikhalovsky S.V. Activation and structural and adsorption features of activated carbons with highly developed micro-, meso- and macroporosity. Adsorption. 2011. 17(3): 453. https://doi.org/10.1007/s10450-010-9282-6

40. Zheng Y., Gun'ko V.M., Howell C.A., Sandeman S.R., Phillips G.J., Kozynchenko O.P., Tennison S.R., Ivanov A.E., Mikhalovsky S.V. Composites with macroporous poly(vinyl alcohol) cryogels with attached activated carbon microparticles with controlled accessibility of a surface. ACS Appl. Mater. Interfaces. 2012. 4(11): 5936. https://doi.org/10.1021/am301577c

41. Sandeman S.R., Gun'ko V.M., Bakalinska O.M., Howell C.A., Zheng Y., Kartel M.T., Phillips G.J., Mikhalovsky S.V. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels and PVA/AC composite. J. Colloid Interface Sci. 2011. 358(2): 582. https://doi.org/10.1016/j.jcis.2011.02.031

42. Turov V.V., Turova A.A., Goncharuk E.V., Gun'ko V.M. Adsorption of methane with the presence of water on oxide, polymer and carbon adsorbents studied using 1H NMR spectroscopy at low temperatures. Appl. Surf. Sci. 2008. 255(5): 3310. https://doi.org/10.1016/j.apsusc.2008.09.050

43. Tóth A., Voitko K.V., Bakalinska O.N., Prykhod'ko G.P., Bertóti I., Martínez-Alonso A., Tascón J.M.D., Gun'ko V.M., László K. Morphology and adsorption activity of chemically modified MWCNT probed by nitrogen, n-propane and water vapor. Carbon. 2012. 50(2): 577. https://doi.org/10.1016/j.carbon.2011.09.016

44. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213

45. Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Gawdzik B., Charmas B. Structural characteristics of porous polymers treated by freezing with water or acetone. Appl. Surf. Sci. 2005. 252(3): 612. https://doi.org/10.1016/j.apsusc.2005.02.075

46. Goliszek M., Podkościelna B., Fila K., Sevastyanova O., Aminzadeh S., Gun'ko V.M. Synthesis and structure characterization of polymeric nanoporous microspheres with lignin. Cellulose. 2018. 25(10): 5843. https://doi.org/10.1007/s10570-018-2009-7




DOI: https://doi.org/10.15407/hftp09.04.317

Copyright (©) 2018 V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.