Influence of solid and liquid hydrophobic compounds on characteristics of water located in an adsorption layer of a hydrophilic component of the system
DOI: https://doi.org/10.15407/hftp09.04.341
Abstract
The aim of this study was to analyze the temperature and interfacial behavior of water bound to A-300, A-300/AM1 and Al2O3/AM1 initial and mechanically treated and located in air, chloroform alone or with addition of trifluoroacetic acid (TFAA) using low-temperature 1H NMR spectroscopy and cryoporometry. Properties of unmodified (A-300) and modified (AM1) (1 : 1) nanosilicas, as well as nanoalumina, were studied in air or chloroform alone or with addition of TFAA using 1H NMR spectra recorded at different temperatures and related cryoporometry. In nontreated composite, water interaction with nanosilica (hydration degree h = 1.125 g/g) increases and free surface energy gS grows by five times due to water reorganization into nanoclusters and similar clusters are absent in cA-300 due to several factors. After the mechanical treatment (bulk density increases to rb » 1.2 g/cm3), water interaction energy with nanosilicas becomes smaller (by three times for CDCl3 and ten times for air medium) than that for nontreated composite. The effects of CDCl3 are much stronger for water in nontreated system than those in compacted composite. This is due to reorganization of water affected both by changes in the confined space effects and the influence of hydrophobic chloroform, which can displace water into small voids (inaccessible for larger chloroform molecules) or larger voids to reduce the contact area of both liquids. Thus, it has been shown that the observed influence of the hydrophobic components in complex hydrophobic/hydrophilic systems on enhancement of water binding to hydrophilic components is the general phenomenon caused by both the confined space effects and features of interactions of water with various hydrophobic structures such as the surface functionalities of hydrophobic silica and hydrophobic liquid (chloroform) or proton-donor components (TFAA).
Keywords
References
1. Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. (Third Edition, Boca Raton: Taylor &Francis,CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
2. Bergna H.E. (Ed.) Colloidal Silica: Fundamentals and Applications. (Salisbury: Taylor & Francis LLC, 2005).
3. Saleh K., Forny L., Guigon P., Pezron I. Dry water: From physico-chemical aspects to process-related parameters. Chem. Eng. Res. Des. 2011. 89(5): 537. https://doi.org/10.1016/j.cherd.2010.06.005
4. Degussa's «dry water» for cosmetics chemists. Focus Pigm. 2004. 8: 7.
5. Wang W., Bray C.L., Adams D.J., Cooper A.I. Methane Storage in Dry Water Gas Hydrates. J. Am. Chem. Soc. 2008. 130(35): 11608. https://doi.org/10.1021/ja8048173
6. Han Z., Zhang Y., Du Z., Xu F., Li S., Zhang J. New-type gel dry-water extinguishants and its effectiveness. J. Cleaner. Prod. 2017. 166: 590. https://doi.org/10.1016/j.jclepro.2017.08.005
7. Hou J., Zhou W., Bai D., Li S., Han M. Interfacial effect of cyclodextrin inclusion complex on gas adsorption kinetics of dry water emulsion. Colloids Surf. A. 2018. 544: 8. https://doi.org/10.1016/j.colsurfa.2018.02.011
8. Taylan O., Berberoglu H., Thermal radiation transport in a fluidized dry water system. J. Quant. Spectrosc. Radiat. Transfer. 2013. 120: 104. https://doi.org/10.1016/j.jqsrt.2013.01.005
9. Arab D., Kantzas A., Bryant S.L. Nanoparticle stabilized oil in water emulsions: A critical review. J. Petrol. Sci. Eng. 2018. 163: 217. https://doi.org/10.1016/j.petrol.2017.12.091
10. Shpak A.P., Gorbyk P.P. (Eds.) Nanomaterials and Supramolecular Structures. (Dordrecht: Springer, 2010). https://doi.org/10.1007/978-90-481-2309-4
11. Chuiko A.A. (Ed.) Medical chemistry and clinical application of silica. (Kiev: Naukova Dumka, 2003). [in Russian].
12. Gun'ko V.M., Turov V.V., Bogatyrev V.M., Zarko V.I., Leboda R., Goncharuk E.V., Novza A.A., Turov A.V., Chuiko A.A. Unusual properties of water at hydrophilic/hydrophobicinterfaces. Adv. Colloid Interface Sci. 2005. 118(1–3): 125. https://doi.org/10.1016/j.cis.2005.07.003
13. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
14. Gun'ko V.M., Turov V.V., Myronyuk I.F., Goncharuk O.V., Pakhlov E.M., Bezruka N.A., Skwarek E., Janusz W., Blitz J.P. Interfacial phenomena at a surface of partially silylated nanosilica. J. Colloid Interface Sci. 2014. 434: 28–39. https://doi.org/10.1016/j.jcis.2014.08.008
15. Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25–30. https://doi.org/10.1016/j.cplett.2017.10.039
16. Gun'ko V.M., Zarko V.I., Leboda R., Chibowski E. Aqueous suspensions of fumed oxides: particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001. 91(1): 1. https://doi.org/10.1016/S0001-8686(99)00026-3
17. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001
18. Kimmich R. NMR Tomography, Diffusometry, Relaxometry. (Heidelberg: Springer, 1997.)
19. Strange J.H., Rahman M., Smith E.G. Characterization of porous solids by NMR. Phys. Rev. Lett. 1993. 71(21): 3589. https://doi.org/10.1103/PhysRevLett.71.3589
20. Mallamace F., Corsaro C., Broccio M., Branca C., González-Segredo N., Spooren J., Chen S.-H., Stanley H.E. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc. Natl. Acad. Sci. USA. 2008. 105(35): 12725. https://doi.org/10.1073/pnas.0805032105
21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.01, Gaussian. (Inc., Wallingford CT, 2013).
22. Chai J.-D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008. 10(44): 6615. https://doi.org/10.1039/b810189b
23. Yang K., Zheng J., Zhao Y., Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010. 132(16): 164117. https://doi.org/10.1063/1.3382342
24. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n
25. Stewart J.J.P. MOPAC2016, Stewart Computational Chemistry. 2018.
26. Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013. 19(1): 1. https://doi.org/10.1007/s00894-012-1667-x
27. Dennington R., Keith T., Millam J. GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission KS, 2009.
28. Zhurko G.A., Zhurko D.A. Chemcraft (version 1.8, build b536a), 2017, www.chemcraftprog.com.
29. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 2004. 25(13): 1605. https://doi.org/10.1002/jcc.20084
DOI: https://doi.org/10.15407/hftp09.04.341
Copyright (©) 2018 V. V. Turov, V. M. Gun'ko, T. V. Krupska, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.