Chemistry, Physics and Technology of Surface, 2018, 9 (4), 362-367.

Еlectrophysical properties of carbon nanotubes/NiCo composites



DOI: https://doi.org/10.15407/hftp09.04.362

O. M. Lisova, S. M. Makhno, G. M. Gunya, P. P. Gorbyk

Abstract


Metal-containing nanocomposites containing nanoparticles of organic and inorganic materials, attract considerable attention of specialists in recent years due to a large number of possible applications.

NiCo nanoparticles have been obtained on the surface of unoxidized and oxidized multiwall carbon nanotubes (MWCNT) by chemical precipitation of the corresponding carbonates from a solution of hydrazine hydrate at a temperature of 350 K. Oxidation of MWCNT was carried out in a solution of ammonium bifluoride and sulfuric acid.

The purpose of this work is to synthesize composites of MWCNT/NiCo and to find differences in their electrophysical properties dependent on the nature of the MWCNT surface.

The transmission electron microscopic and radiographic studies showed the presence of phases composites with the size of crystallites of 20–30 nm. The packing density of agglomerates of metal particles is higher in composites with unoxidized MWCNT. The metal particles are arranged on the surface of MWCNT more evenly and in shape more close to spherical in composites with oxidized MWCNT.

The method of thermogravimetric analysis shows that the process of composites oxidation during heating for a composite containing oxidized MWCNT is more intense. It indicates a smaller particle size of metals.

The real and imaginary components of the complex dielectric and magnetic permeabilities of the disperse composites was determined by the methods of ultrahigh-frequency interferometry. The corresponding values are somewhat higher for composites containing oxidized MWCNT in the ultrahigh-frequency range. The values of imaginary magnetic permeability are higher by 18 % for unoxidized MWCNT composites at low frequencies. The electrical conductivity at low frequencies is 2.9 and 1.6 Ohm–1·cm–1 for composites containing unoxidized and oxidized MWCNTs, respectively.


Keywords


multiwall carbon nanotubes; nanocomposites; complex dielectric and magnetic permeability; ultrahigh-frequency range

Full Text:

PDF

References


1. Sharma G., Naushad M., Kumar A., Devi S., Khan M.R. Lanthanum/Cadmium/Polyaniline bimetallic nanocomposite for the photodegradation of organic pollutant. Iran. Polym. J. 2015. 24(12): 1003. https://doi.org/10.1007/s13726-015-0388-2

2. Sharma G., Kumar D., Kumar A., Al-Muhtaseb A.H., Pathania D., Naushad M., Mola G.T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mater. Sci. Eng. C. 2017. 71: 1216. https://doi.org/10.1016/j.msec.2016.11.002

3. Hamidi S.M., Mosaeii B., Afsharnia M., Aftabi A., Najafi M. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor. J. Magn. Magn. Mater. 2016. 417: 413. https://doi.org/10.1016/j.jmmm.2016.05.078

4. Han Y., Li W., Zhang M., Tao K. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni (B)/Fe (B) bimetallic catalytic reductant. Chemosphere. 2008. 72(1): 53. https://doi.org/10.1016/j.chemosphere.2008.02.002

5. Habibi B., Ghaderi S. Synthesis, characterization and electrocatalytic activity of Co@Pt nanoparticles supported on carbon-ceramic substrate for fuel cell applications. Int. J. Hydrogen Energy. 2015. 40(15): 5115. https://doi.org/10.1016/j.ijhydene.2015.02.103

6. Motlak M., Barakat N.A.M., Akhtar M.S., Hamza A.M., Kim B., Sang C., Abdelrazek K., Almajid A.A. High performance of NiCo nanoparticles-doped carbon nano fi bers as counter electrode for dye-sensitized solar cells. Electrochim. Acta. 2015. 160: 1. https://doi.org/10.1016/j.electacta.2015.02.063

7. Dao V., Choi Y., Yong K., Larina L.L., Shevaleevskiy O., Choi H. A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells. J. Power Sources. 2015. 274: 831. https://doi.org/10.1016/j.jpowsour.2014.10.095

8. Cui M, Huang J., Wang Y., Wu Y., Luo X. Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene – carbon nanotube composites. Biosens. Bioelectron. 2015. 68: 563. https://doi.org/10.1016/j.bios.2015.01.029

9. Kung C., Lin P., John F., Xue Y, Yu X. Preparation and characterization of three dimensional graphene foam supported platinum – ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosens. Bioelectron. 2014. 52:1. https://doi.org/10.1016/j.bios.2013.08.025

10. Awasthi S., Pandey S.K., Juyal A., Pandey C.P., Balani K. Synergistic effect of carbonaceous reinforcements on microstructural, electrochemical, magnetic and tribological properties of electrophoretically deposited nickel. J. Alloys Compd. 2017. 711: 424. https://doi.org/10.1016/j.jallcom.2017.04.003

11. Ahmad A., Qureshi A.S., Li L., Bao J., Jia X., Xu Y., Guo X. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites. Colloids Surf. B Biointerfaces. 2016. 143: 490. https://doi.org/10.1016/j.colsurfb.2016.03.065

12. Lisova O.M., Makhno S.M., Gunya G.M., Gorbyk P.P. Synthesis of the composites of grapheme nanoplatelets/(Ni-Co) and their properties. Him. Fiz. Tehnol. Poverhni. 2017. 8(4): 393. https://doi.org/10.15407/hftp08.04.393

13. Kovalska E.O., Sementsov Yu.I., Kartel M.T., Prikhod'ko G.P. Synthesis of catalysts for growth of carbon nanotubes and testing their effectiveness. Him. Fiz. Tehnol. Poverhni. 2012. 3(3): 335.

14. Lisova O.M., Abramov M.V., Makhno S.M., Gorbik P.P. Synthesis and Magnetic Characteristics of Ni-Co Nanocomposites. Metallofizika i noveishie tekhnologii. 2018. 40(5): 561.

15. Lapsina P.V. Ph. D (Chem.) Thesis. (Kemerovo, 2013). [in Russian].

16. Hanyuk L.M., Ihnatkov V.D., Makhno S.M., Soroka P.M. Study of the dielectric properties of the fibrous material. Ukr. fiz. zhurn. 1995. 40(6): 627. [in Ukrainian].

17. Sementsov Yu.I., Makhno S.M., Zhuravsky S.V., Kartel M.T. Properties of polyethylene-carbon nanotubes composites. Him. Fiz. Tehnol. Poverhni. 2017. 8(2):107. [in Ukrainian]. https://doi.org/10.15407/hftp08.02.107




DOI: https://doi.org/10.15407/hftp09.04.362

Copyright (©) 2018 O. M. Lisova, S. M. Makhno, G. M. Gunya, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.