Chemistry, Physics and Technology of Surface, 2018, 9 (4), 393-403.

Synthesis of multilayer azagraphene and carbon nitride oxide



DOI: https://doi.org/10.15407/hftp09.04.393

M. E. Bondarenko, P. M. Silenko, N. I. Gubareni, O. Yu. Khyzhun, N. Yu. Ostapovskaya, Yu. M. Solonin

Abstract


As an one of the most promising materials of green energy as a photocatalyst for the production of hydrogen from renewable, natural sources (water, greenhouse gas) and environmental remediation through the degradation of toxic organic pollutants, graphite-like carbon nitride (characterized as a non-toxic and chemically highly resistant material) and its nanostructured and doped (especially by oxygen atoms) derivatives attract special attention. The actual task for expanding the scope of application of g-C3N4 is to improve and optimize its catalytic, electronic and optical properties by increasing both the surface area of graphitic carbon nitride and the number of active centers of the carbon nitride network due to doping of carbon nitride. The use of a mixture of two different precursors ensures the creation of heterojunctions, and as a result, an improvement the photocatalytic characteristics of g-C3N4. The oxygen-doped carbon nitride (O-g-C3N4) and water-soluble carbon nitride oxide (g-C3N4)O was simultaneously synthesized by the gas phase method under special reaction conditions of pyrolysis of cyanuric acid and urea mixture. Reduction by the hydroquinone of carbon nitride oxide (g-C3N4)O yields nanostructured reduced carbon nitride (or reduced multilayer azagraphene). Obtained products were characterized by using Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), chemical and X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM). According to the results of XPS and IR spectrometry the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride (RCN) correspond to the bonds in a synthesized carbon nitride (SCN). However, according to XRD results, reduced carbon nitride (RCN) probably consists of poorly connected heteroatomic azagraphene layers, because it has a significantly larger (on 0.09 nm) interplanar distance between the adjacent nitrogen-carbon layers than interplanar distance between the layers of synthesized carbon nitride (SCN). By SEM characterization it was found that the pyrolysis of a mixture of various precursors (cyanuric acid and urea) yielded a product with smaller crystalline domains (which can improve photocatalytic characteristics) than the pyrolysis of a single precursor (urea only).


Keywords


azagraphene; carbon nitride oxide; cyanuric acid; urea; pyrolysis; photocatalyst

Full Text:

PDF

References


1. Franklin E.C. The ammono carbonic acids. J. Am. Chem. Soc. 1922. 44(3): 486. https://doi.org/10.1021/ja01424a007

2. Kumar S., Karthikeyan S., Lee A.F. g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts. 2018. 8(2): 74. https://doi.org/10.3390/catal8020074

3. Wang A., Wang C., Fu L., Wong-Ng W., Lan Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 2017. 9: 1. https://doi.org/10.1007/s40820-017-0148-2

4. Ong W.J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front. Mater. 2017. 4: 1. https://doi.org/10.3389/fmats.2017.00011

5. Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017. 391: 72. https://doi.org/10.1016/j.apsusc.2016.07.030

6. Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009. 8: 76. https://doi.org/10.1038/nmat2317

7. Martha S., Nashima A., Parida K.M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J. Mater. Chem. A. 2013. 1: 7816. https://doi.org/10.1039/c3ta10851a

8. Liu J., Wang H., Antonietti M. Graphitic carbon nitride «reloaded»: emerging applications beyond (photo) catalysis. Chem. Soc. Rev. 2016. 45: 2308. https://doi.org/10.1039/C5CS00767D

9. Xiong M., Rong Q., Meng H., Zhang X. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens. Bioelectron. 2017. 89: 212. https://doi.org/10.1016/j.bios.2016.03.043

10. Zhang Y., Pan Q., Chai G., Liang M., Dong G., Zhang Q., Qiu J. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013. 3: 1943. https://doi.org/10.1038/srep01943

11. Kharlamov O., Bondarenko M., Kharlamova G., Silenko P., Khyzhun O., Gubareni N. Carbon Nitride Oxide (g-C3N4)O and Heteroatomic N-graphene (Azagraphene) as Perspective New Materials in CBRN defense. In: Nanostructured Materials for the Detection of CBRN, NATO Science for Peace and Security Series A: Chemistry and Biolog. (J. Bonca, S. Kruchinin Eds., Springer, Dordrecht, Chapter V. 20. 2018. P. 279).

12. Kharlamova G., Kharlamov O., Bondarenko M., Silenko P., Khyzhun O., Gubareni N. Toxicology of Heterocarbon and Application of Nanoheterocarbon Materials for CBRN Defense. In: Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. (Bonca J., Kruchinin S. Eds. Springer, Dordrecht, Chapter V. 19. 2018. P. 245). https://doi.org/10.1007/978-94-024-1304-5_19

13. Kharlamova G., Kharlamov O., Bondarenko M., Khyzhun O. Hetero-carbon nanostructures as the effective Sensors in Security Systems. In: Nanomaterials for Security, NATO Science for Peace and Security Series A: Chemistry and Biology. (J. Bonca and S. Kruchinin, Eds. Dordrecht: Springer Science+Business Media, V. 19. 2016. P. 239). https://doi.org/10.1007/978-94-017-7593-9_19

14. Kharlamov O., Bondarenko M., Kharlamova G. O-Doped Carbon Nitride (O-g-C3N) With High Oxygen Content (11.1 mass %) Synthesized by Pyrolysis of Pyridine. In: Nanotechnology to Aid Chemical and Biological Defense, NATO Science for Peace and Security Series A: Chemistry and Biology. (T.A. Camesano Ed. Dordrecht: Springer Science+Business Media, V. 9. 2015. P. 129).

15. Zhang S., Li J., Zeng M., Zeng M., Zhao G., Xu J., Hu W., Wang X. In situ synthesis of magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl. Mater. Interfaces. 2013. 5: 12735. https://doi.org/10.1021/am404123z

16. Yuan B., Chu Z., Li G., Jiang Z., Hu T., Wang Q., Wang C. Ribbon-like graphitic carbon nitride (g-C3N4): green synthesis, self-assembly and unique optical properties. J. Mater. Chem. C. 2014. 2: 8212. https://doi.org/10.1039/C4TC01421A

17. Zhang X., Xie X., Wang H., Zhang J., Pan B., Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013. 135: 18. https://doi.org/10.1021/ja308249k

18. Li J., Shen B., Hong Z. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012. 48: 12017. https://doi.org/10.1039/c2cc35862j

19. Ming L., Yue H., Xua L., Chen F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A. 2014. 2: 19145. https://doi.org/10.1039/C4TA04041D

20. Wang C., Fan H., Ren X., Ma J., Fang J.,Wang W. Hydrothermally induced oxygen doping of graphitic carbon nitride with a highly ordered architecture and enhanced photocatalytic activity. Chem. Sus. Chem. 2018. 11(4): 700. https://doi.org/10.1002/cssc.201702278

21. Jiang L.B., Yuan X.Z., Pan Y., Liang J., Zeng G.M., Wu Z.B., Wang H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B. 2017. 217: 388. https://doi.org/10.1016/j.apcatb.2017.06.003

22. You R., Chen L., Zhang Y. Research progress on improving the photocatalysis of graphite-C3N4 via O, S and P doping. J. Adv. Phys. Chem. 2017. 6(2): 84. https://doi.org/10.12677/JAPC.2017.62011

23. Qiu P.X., Xu C.M., Chen H., Fang J., Xin W., Ruifeng L., Xirui Z. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. Appl. Catal. B. 2017. 206: 319. https://doi.org/10.1016/j.apcatb.2017.01.058

24. Liu X., Ji H., Wang J., Xiao J., Yuan H., Xiao D. Ozone treatment of graphitic carbon nitride with enhanced photocatalytic activity under visible light irradiation. J. Colloid Interface Sci. 2017. 505: 919. https://doi.org/10.1016/j.jcis.2017.06.082

25. Qu X., Hu S., Bai J., Li P., Lu G., Kang X. A facile approach to synthesize oxygen doped g-C3N4 with enhanced visible light activity under anoxic conditions via oxygen-plasma treatment. New J. Chem. 2018. 42: 4998. https://doi.org/10.1039/C7NJ04760F

26. Kharlamov A., Bondarenko M., Kharlamova G. Method for the synthesis of water-soluble oxide of graphite-like carbon nitride. Diamond Relat. Mater. 2016. 61: 46. https://doi.org/10.1016/j.diamond.2015.11.006

27. Kharlamov A., Bondarenko M., Kharlamova G., Gubareni N. Features of the synthesis of carbon nitride oxide (g-C3N4)O at urea pyrolysis. Diamond Relat. Mater. 2016. 66: 16. https://doi.org/10.1016/j.diamond.2016.03.012

28. Dziubek K., Citroni M., Fanetti S., Cairns A.B., Bini R. Synthesis of high-quality crystalline carbon nitride oxide by selectively driving the high-temperature instability of urea with pressure. J. Phys. Chem. C. 2017. 121: 19872. https://doi.org/10.1021/acs.jpcc.7b06751

29. Kharlamov A., Bondarenko M., Kharlamova G., Fomenko V. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O. J. Solid State Chem. 2016. 241: 115. https://doi.org/10.1016/j.jssc.2016.06.003

30. Kharlamov A.I., Bondarenko M.E., Kirillova N.V. New method for synthesis of fullerenes and fullerene hydrides from benzene. Russ. J. Appl. Chem. 2012. 85(2): 233. https://doi.org/10.1134/S1070427212020127

31. Dong F., Zhao Z., Xiong T., Ni Z., Zhang W., Sun Y., Ho W.K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces. 2013. 5(21): 11392. https://doi.org/10.1021/am403653a

32. Fu J., Zhu B., Jiang C., Cheng B., You W., Yu J. Hierarchical porous o-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small. 2017. 13(15): 1603938. https://doi.org/10.1002/smll.201603938

33. Liu S., Li D., Sun H., Ang H.M., Tade M.O.,Wang S. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. J. Colloid Interface Sci. 2016. 468: 176. https://doi.org/10.1016/j.jcis.2016.01.051




DOI: https://doi.org/10.15407/hftp09.04.393

Copyright (©) 2018 M. E. Bondarenko, P. M. Silenko, N. I. Gubareni, O. Yu. Khyzhun, N. Yu. Ostapovskaya, Yu. M. Solonin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.