Chemistry, Physics and Technology of Surface, 2018, 9 (4), 417-431.

Composite on the basis of hydrated zirconium dioxide and graphene oxide for removal of organic and inorganic components from water



DOI: https://doi.org/10.15407/hftp09.04.417

Yu. S. Dzyazko, V. M. Ogenko, Yu. M. Volfkovich, V. E. Sosenkin, T. V. Maltseva, T. V. Yatsenko, K. O. Kudelko

Abstract


The aim of the investigation is to develop multifunctional adsorbent, which is able to remove both inorganic ions and molecular organic substances from aqueous solutions. Oxidized graphene has been obtained by Hammer’s method. The composite, which includes hydrated zirconium dioxide and graphene oxide (» 2 mass. %), has been synthesized by deposition from sol containing dispersed particles of the carbon material. The adsorbent as well as its constituents were investigated with methods of XRD analysis, FTIR spectroscopy, TEM and standard contact porosimetry involving octane (ideally wetting liquids) and water as working liquids. Strong hydration of graphene oxide in water has been found: the volume of micro- and mesopores in water medium is higher than that in octane. It means that the oxidized graphene behaves similarly to ion exchange polymers. This is evidently due to its hydrophilic functional groups (hydroxyle carboxyl and epoxy groups). High specific surface area of graphene oxide reaches 1200 (in the organic solvent) or 2250 m2g–1 (in aqueous medium). It has been shown that graphene covers the particles of the inorganic matrix loosening its structure within the wide interval of pore size (from 10 nm to 1.5 µm). As found, adsorption isotherms of Pb(II) and HCrO4- ions obeys with Langmuir model. The filler improves adsorption of Pb(II) ions increasing the capacity in 1.7 times due to its expressed cation exchange properties. Contrary, anion exchange function of the composite is depressed, since the sheets of graphene oxide screen adsorption centers of the inorganic matrix. Other reason can be electrostatic repulsion of anions due to the shift of the point of zero charge of the composite to acidic field. By reason of the carbon filler, the oxide material acquires the capability to adsorb both slightly dissociated (phenol) and molecular (lactose) organic substances. When the initial content of phenol is 5 mg dm–3, it is possible to reduce its content in water down to maximal permeable concentration. After adsorption, the content of lactose is much lower than this parameter. It means, that the composite provides practically complete removal of organics from water.


Keywords


graphene oxide; hydrated zirconium dioxide; standard contact porosimetry; hydrophilic pores; hydrophobic pores; adsorption; lead; chromate; phenol; lactose

Full Text:

PDF

References


1. Young R.J., Kinloch I.A., Gong L., Novoselov K.S. The mechanics of graphene nanocomposites: A review. Compos. Sci. Technol. 2012. 72(12): 1459. https://doi.org/10.1016/j.compscitech.2012.05.005

2. Choi Y.R., Yoon Y.-G., Choi K.S., Kang J.H., Shim Y.-S., Kim Y.-H., Hye Jung Chang H.J., Lee J.-H., Park Ch.R., Kim S.Y., Jang H.W. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon. 2015. 91: 178. https://doi.org/10.1016/j.carbon.2015.04.082

3. Chabot V., Higgins D., Yu A., Xiao X., Chen Z., Zhang J. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014. 7: 1564. https://doi.org/10.1039/c3ee43385d

4. Zhu Y., Murali Sh., Cai W., Li X., Suk J.W., Potts J.R., Ruof R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010. 22(35): 3906. https://doi.org/10.1002/adma.201001068

5. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of grapheme oxide. Chem. Soc. Rev. 2010. 39(1): 228. https://doi.org/10.1039/B917103G

6. Chen D., Feng H., Li J. Graphene oxide: preparation, functionalization, and electrochemical Applications. Chem. Rev. 2012. 112(11): 6027. https://doi.org/10.1021/cr300115g

7. Barbolina I., Woods C.R., Lozano N., Kostarelos K., Novoselov K.S., Roberts I.S. Purity of graphene oxide determines its antibacterial activity. 2D Mater. 2016. 3(2): 025025.

8. Chen Ch.-H, Hu Sh., Shih J.-F., Yang Ch.-Y., Luo Y.-W., Ren-Huai Jhang R.-H., Chiang Ch.-M., Hung Y.-J. Effective synthesis of highly oxidized graphene oxide that enables wafer-scale nanopatterning: preformed acidic oxidizing medium approach. Sci. Rep. 2017. 7: 3908. https://doi.org/10.1038/s41598-017-04139-0

9. Seresht R.J., Jahanshahi M., Rashidi A., Ghoreyshi A.A. Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Appl. Surf. Sci. 2013. 276: 672. https://doi.org/10.1016/j.apsusc.2013.03.152

10. McAllister M.J., Li J.-L., Adamson D.H., Schniepp H.C, Abdala A.A., Liu J., Herrera-Alonso M., Milius D.L., Car R., Prud'homme R.K., Aksay I.A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007. 19(18): 4396. https://doi.org/10.1021/cm0630800

11. Volfkovich Yu.M., Sosenkin V.E. Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russ. Chem. Rev. 2012. 86(6): 936. https://doi.org/10.1070/RC2012v081n10ABEH004281

12. Volfkovich Yu.M., Bagotsky V.S. Experimental methods for investigation of porous materials and powders, In: Porous materials and powders used in different fields of science and technology. (London: Springer-Verlag, 2014). https://doi.org/10.1007/978-1-4471-6377-0_1

13. Volfkovich Y.M., Rychagov A.Y., Sosenkin V.E., Efimov O.N., Os'makov M.I. Measuring the specific surface area of carbon nanomaterials by different methods. Russ. J. Electrochem. 2014. 50(11): 1099. https://doi.org/10.1134/S1023193514110111

14. Rouquerol J., Baron G., Denoyel R., Giesche H., Groen J., Klobes P., Levitz P., Neimark A.V., Rigby S., Skudas R., Sing K., Thommes M., Unger K. Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 2012. 84(1): 107. https://doi.org/10.1351/PAC-REP-10-11-19

15. Xu Z., Sun H., Zhao X., Gao Ch. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2012. 25(2): 188. https://doi.org/10.1002/adma.201203448

16. Paredes J.I., Villar-Rodil S., Martínez-Alonso A., Tascón J.M.D. Graphene oxide dispersions in organic solvents. Langmuir. 2008. 24(19): 10560. https://doi.org/10.1021/la801744a

17. Dikin D.A., Stankovich S., Zimney E.J., Piner R.D., Dommett G.H.B., Evmenenko G., Nguyen S.T., Ruoff R.S. Preparation and characterization of graphene oxide paper. Nature. 2007. 448: 457. https://doi.org/10.1038/nature06016

18. Sheng G., Huang Ch., Chen G., Sheng J., Ren X., Hu B., Ma J., Wang X., Huang Y., Alsaedi A., Hayat T. Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation. Environ. Pollut. 2018. 233: 125. https://doi.org/10.1016/j.envpol.2017.10.047

19. Sotirelis N.P., Chrysikopoulos C.V. Interaction between graphene oxide nanoparticles and quartz sand. Environ. Sci. Technol. 2015. 49(22): 13413. https://doi.org/10.1021/acs.est.5b03496

20. Chrysikopoulos C.V., Sotirelis N.P., Kallithrakas-Kontos N.G. Cotransport of graphene oxide nanoparticles and kaolinite colloids in porous media. Transp. Porous Media. 2017. 119(1): 181. https://doi.org/10.1007/s11242-017-0879-z

21. Sotirelis N.P., Chrysikopoulos C.V. Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids. Sci. Total Environ. 2017. 579: 736. https://doi.org/10.1016/j.scitotenv.2016.11.034

22. Chen Ch., Shang J., Zheng X., Zhao K., Yan Ch., Sharma P., Liu K. Effect of physicochemical factors on transport and retention of graphene oxide in saturated media. Environ. Pollut. 2018. 236: 168. https://doi.org/10.1016/j.envpol.2018.01.026

23. Wang J., Yao W., Gu P., Yu Sh., Wang X., Du Y., Wang H., Zhongshan Chen Z., Hayat T., Wang X. Efficient coagulation of graphene oxide on chitosan–metal oxide composites from aqueous solutions. Cellulose. 2017. 24(2): 851. https://doi.org/10.1007/s10570-016-1176-7

24. Liu X., Li J., Huang Y., Wang X., Zhang X., Wang X. Adsorption, aggregation, and deposition behaviors of carbon dots on minerals. Environ. Sci. Technol. 2017. 51(11): 6156. https://doi.org/10.1021/acs.est.6b06558

25. Hongwen L.S., Fugetsu Y.B. Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J. Hazard. Mater. 2012. 203-204: 101. https://doi.org/10.1016/j.jhazmat.2011.11.097

26. Zhang W., Zhou Ch., Zhou W., Lei A., Zhang Q., Wan Q., Zou B. Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull. Environ. Contam. Toxicol. 2011. 87(1): 86. https://doi.org/10.1007/s00128-011-0304-1

27. Ramesha G.K., Kumara A.V., Muralidhara H.B., Sampath S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 2011. 361(1): 270. https://doi.org/10.1016/j.jcis.2011.05.050

28. Gao Y., Li Y., Zhang L., Huang H., Hu J., Shah S.M., Su X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2012. 368(1): 540. https://doi.org/10.1016/j.jcis.2011.11.015

29. Pavagadhi S., Tang A.L.L., Sathishkumar M., Loh K.P., Balasubramanian R. Removal of microcystin-LR and microcystin-RR by graphene oxide: Adsorption and kinetic experiments. Water Res. 2013. 47(13): 4621. https://doi.org/10.1016/j.watres.2013.04.033

30. Wu M., Kempaiah R., Huang P.-J.J., Maheshwari V., Liu J. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir. 2011. 27(6): 2731. https://doi.org/10.1021/la1037926

31. Wang J., Chen Z., Chen B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 2014. 48(9): 4817. https://doi.org/10.1021/es405227u

32. Zhao G., Li J., Ren X., Chen Ch., Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011. 45(24): 10454. https://doi.org/10.1021/es203439v

33. Sitko R., Turek E., Zawisza B., Malicka E., Ewa Talik E., Jan Heimann J., Gagor A., Feist B., Wrzalik R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013. 42: 5682. https://doi.org/10.1039/c3dt33097d

34. Tan P., Sun J., Hu Y., Fang Z., Bi Q., Chen Y., Cheng J. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 2015. 297: 251. https://doi.org/10.1016/j.jhazmat.2015.04.068

35. Li Z., Chen F., Yuan L., Liu Y., Zhao Y., Chai Z., Shi W. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem. Eng. J. 2012. 210: 539. https://doi.org/10.1016/j.cej.2012.09.030

36. Li L., Li C., Bao Ch., Jia Q., Xiao P., Liu X., Zhang Q. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta. 2012. 93: 350. https://doi.org/10.1016/j.talanta.2012.02.051

37. Zhang N., Qiu H., Si Y., Wang W., Gao J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon. 2011. 49(3): 827. https://doi.org/10.1016/j.carbon.2010.10.024

38. Fan L., Ch., Sun M., Li X., Qiu H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B. 2013. 103: 523. https://doi.org/10.1016/j.colsurfb.2012.11.006

39. Zhang Y., Liu Y., Wang X., Sun Z., Ma J., Wu T., Xing F., Gao J. Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydr. Polym. 2014. 101: 392. https://doi.org/10.1016/j.carbpol.2013.09.066

40. Amphlett C.B. Inorganic Ion Exchangers. (Amsterdam: Elsevier, 1964).

41. Myronchuk V.G., Dzyazko Yu.S., Zmievskii Yu.G., Ukrainets A.I., Bildukevich A.V., Kornienko L.V., Rozhdestvenskaya L.M., Palchik A.V. Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica. 2016. 2016(47): 153. https://doi.org/10.2298/APT1647153M

42. Zmievskii Yu., Rozhdestvenska L., Dzyazko Yu., Kornienko L., Myronchuk V., Bildukevich A., Ukrainetz A. Organic-inorganic materials for baromembrane separation. Springer Proc. Phys. 2017. 195: 675. https://doi.org/10.1007/978-3-319-56422-7_51

43. Mal'tseva T.V., Kolomiets E.A., Vasilyuk S.L. Hybrid adsorbents based on hydrated oxides of Zr(IV), Ti(IV), Sn(IV), and Fe(III) for arsenic removal. J. Water Chem. Technol. 2017. 39(4): 214. https://doi.org/10.3103/S1063455X17040063

44. Kolomiets E.A., Belyakov V.N., Palchik A.V. Maltseva T.V., Zheleznova L.I. Adsorption of arsenic by hybrid anion–exchanger based on titanium oxyhydrate. J. Water Chem. Technol. 2017. 39(2): 80. https://doi.org/10.3103/S1063455X17020047

47. Maji S., Ghosh A., Gupta K., Ghosh A., Ghorai U., Santra A., Sasikumar P., Ghosh U.Ch. Efficiency evaluation of arsenic(III) adsorption of novel graphene oxide@iron-aluminium oxide composite for the contaminated water purification. Sep. Purif. Technol. 2018. 197: 388. https://doi.org/10.1016/j.seppur.2018.01.021

48. Luo X., Wang Ch., Wang L., Deng F., Luo Sh., Tu X., Au Ch. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem. Eng. J. 2013. 220: 98. https://doi.org/10.1016/j.cej.2013.01.017

49. Wan Sh., He F., Wu J., Wan W., Gu Y., Gao B. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J. Hazard. Mater. 2016. 314: 32. https://doi.org/10.1016/j.jhazmat.2016.04.014

50. Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010. 4(8): 4806. https://doi.org/10.1021/nn1006368

51. Dzyazko Y.S., Volfkovich Y.M., Sosenkin V.E., Nikolskaya N.F., Gomza Yu.P. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res. Lett. 2010. 9(1): 271. https://doi.org/10.1186/1556-276X-9-271

52. Meng F., Zhang X., Xu B., Yue Sh., Guo H., Luo Y. Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels. J. Mater. Chem. 2011. 21: 18537. https://doi.org/10.1039/c1jm13960f

53. Smettem K.R.J. Particle density. In: Encyclopedia of soil science. V. 2. (New York: Taylor and Francis Group, 2006).

54. Belyakov V.N., Rozhdestvenska L.M., Dzyazko Y.S. Electrodeionization of a Ni2+ solution using highly hydrated zirconium hydrophosphate. Desalination. 2006. 198(1–3): 247.

55. Marhol M. Ion exchangers in analytical chemistry: their properties and use in inorganic chemistry. In: Comprehensible analytical chemistry. V. XIV. (Amsterdam: Elsevier, 1981).

56. Kang Ch., Wang Y., Li R., Du Y., Li J., Zhang B., Zhou L., Du Y. A modified spectrophotometric method for the determination of trace amounts of phenol in water. Microchem. J. 2000. 64 (2): 161. https://doi.org/10.1016/S0026-265X(99)00022-3

57. Reeve R. Introduction to Environmental Analysis. (Chichester: Wiley, 2002). https://doi.org/10.1002/0470845783

58. Zhao J., Liu L., Li F. Graphene Oxide: Physics and Applications. (Heidelberg, New York, Dordrecht, London: Springer, 2015).

59. Kostrikin A.V., Spiridonov F.M., Komissarova L.N., Lin'ko I.V., Kosenkova O.V. On the structure and dehydration of hydrous zirconia and hafnia xerogels. Russ. J. Inorg. Chem. 2010. 55(6): 866. https://doi.org/10.1134/S0036023610060070

60. Kononenko N.A., Berezina N.P., Vol'fkovich Y.M., Shkol'nikov E.I., Blinov I.A. Investigation of ion-exchange materials structure by standard porosimetry method. J. Appl. Chem. USSR. 1985. 58(10): 2029.

61. Volfkovich Yu.M., Sosenkin V.E., Nikolskaya N.F., Kulova T.L. Porous structure and hydrophilic-hydrophobic properties of gas diffusion layers of the electrodes in proton-exchange membrane fuel cells. Russ. J. Electrochem. 2008. 44(3): 278. https://doi.org/10.1134/S102319350803004X

62. Yang Z., Yan H., Yang H., Li H., Li A., Cheng R. Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Res. 2013. 47(9): 3037. https://doi.org/10.1016/j.watres.2013.03.027

63. Rouquerol F., Rouquerol J., Sing H. Adsorption by powders and porous solids. Principles, methodology and application. (London, San Diego: Academic Press, 1999).

64. Goncharuk V.V., Dubrovina L.V., Kucheruk D.D., Samsoni-Todorov A.O., Ogenko V.M., Dubrovin I.V. Water purification of dyes by ceramic membranes modified by pyrocarbon of carbonized polyisocyanate. J. Water Chem. Technol. 2016. 38(1): 34. https://doi.org/10.3103/S1063455X16010069

65. Goncharuk V.V., Dubrovina L.V., Kucheruk D.D., Samsoni-Todorov A.O., Ogenko V.M., Dubrovin I.V. Water purification of dyes by ceramic membrane modified by pyrocarbon from carbonized polymers. J. Water Chem. Technol. 2016. 38(3): 163. https://doi.org/10.3103/S1063455X16030073




DOI: https://doi.org/10.15407/hftp09.04.417

Copyright (©) 2018 Yu. S. Dzyazko, V. M. Ogenko, Yu. M. Volfkovich, V. E. Sosenkin, T. V. Maltseva, T. V. Yatsenko, K. O. Kudelko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.