Chemistry, Physics and Technology of Surface, 2019, 10 (2), 118-134.

Influence of β-cyclodextrin immobilization method on sorption properties of modified silicas



DOI: https://doi.org/10.15407/hftp10.02.118

L. A. Belyakova, D. Yu. Lyashenko, N. V. Roik, I. M. Trofymchuk, O. M. Shvets

Abstract


The purpose of this work is to study the influence of β-cyclodextrin immobilization method on the sorption of benzoic acid from aqueous solutions by highly dispersed amorphous silicas. Silicas with large specific surface area, high reactivity of functional groups, hydrolytic, chemical and radiation stability are widely used oxide matrices for synthesis of new materials with predicted sorption specificity. The surface immobilization of organic compounds that form “key-lock” or “host-guest” complexes is one of the effective ways to make the silica sorption affinity for specific substances. Benzoic acid and its functional derivatives are used in the synthesis of herbicides, pesticides, polymers, preservatives, resins, plasticizers, dyes, drugs, and cosmetics. They have a harmful effect on living organisms even at low concentrations in water. Therefore the extraction of trace amounts of aromatic organic substances from aqueous objects is an important task of environmental science. Silicas modified by β-cyclodextrin adsorption and its chemical fixing on the surface of aerosil A-300, silochrome C-120 and silica gel KSKG-4 were synthesized. Using elemental, chemical and thermogravimetric analysis, pH-metry, IR spectroscopy, low-temperature nitrogen adsorption-desorption, spectrophotometry, and sorption measurements, the structure and physicochemical properties of resulting functional materials were characterized. An increase in the acidity of silanol groups in the series A-300 < C-120 < KSKG-4 with silica structure ordering was found. The sorption affinity of modified silicas to benzoic acid grows by two orders of magnitude, and the distribution coefficients – in 30–150 times. The results of benzoic acid sorption studies were analyzed using the Lagergren kinetic model and the Langmuir and Freundlich equilibrium adsorption models. The processes that occur when β-cyclodextrin-containing silicas contact with benzoic acid solutions were identified. It has been shown that desorption of β-cyclodextrin prevents the formation of inclusion complexes in the surface layer of silicas. No correlation was found between porous structure of silicas and strength of β-cyclodextrin retention on their surface. The use of silicas chemically modified with β-cyclodextrin for extraction of benzoic acid and its functional derivatives from aqueous solutions, including that in cyclic sorption-desorption mode, was demonstrated.


Keywords


silica; surface; modification; β-cyclodextrin; benzoic acid; sorption

Full Text:

PDF (Русский)

References


1. Iler R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. (New York: John Wiley & Sons, 1979).

2. Kiselev A.V., Dreving V.P. Experimental Methods in Adsorption and Molecular Chromatography. (Moscow: Moscow University Publ., 1973). [in Russian].

3. Vansant E.F., Van der Voort P., Vrancken K.C. Characterization and Chemical Modification of the Silica Surface. (Amsterdam: Elsevier, 1995). https://doi.org/10.1016/S0167-2991(06)81508-9

4. Chuiko A.A (Ed.) Medical Chemistry and Clinical Application of Silicon Dioxide. (Kyiv: Naukova Dumka, 2003). [in Russian].

5. Kiselev A.V., Lygin V.I. Infrared Spectra of Surface Compounds. (New York, Toronto: John Wiley & Sons, 1975).

6. Tertykh V.A., Belyakova L.A. Chemical Reactions Involving Silica Surface. (Kyiv: Naukova Dumka, 1991). [in Russian].

7. Laskorin B.N., Strelko V.V., Strazhesko D.N., Denisov V.I. Sorbents Based on Silica in Radiochemistry. Chemical Properties. Application. (Moscow: Atomizdat, 1977). [in Russian].

8. Unger K.K. Porous Silica. Its Properties and Use as Support in Column Liquid Chromatography. (Amsterdam: Elsevier, 1979).

9. Steed J.W., Atwood J.L. Supramolecular Chemistry. (Chichester: John Wiley & Sons Ltd, 2000).

10. Von Lehn J.-M. Supramolecular Chemistry. Concepts and Perspectives. (Weinheim: VCH Verlagsgesellschaft, 1995). https://doi.org/10.1002/3527607439

11. Lisichkin G.V. Chemistry of Grafted Surface Compounds. (Moscow: Fizmatlit, 2003). [in Russian].

12. Sadegh H., Ali. G.A.M., Gupta V.K., Makhlouf A.S.H., Shahryari-ghoshekandi R., Nadagouda M.N., Sillanpää M., Megiel E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 2017. 7(1): 1. https://doi.org/10.1007/s40097-017-0219-4

13. Belyakova L.A., Shvets O.M., Lyashenko D.Yu. Nanosized centers for mercury(II) ions adsorption on a surface of modified silica. Cent. Eur. J. Chem. 2008. 6(4): 581. https://doi.org/10.2478/s11532-008-0068-6

14. Roik N.V., Belyakova L.A. Interaction of supramolecular centers of silica surface with aromatic amino acids. J. Colloid Interface Sci. 2011. 362(1): 172. https://doi.org/10.1016/j.jcis.2011.05.085

15. Shvets O.M., Belyakova L.A. Synthesis, characterization and sorption properties of silica modified with some derivatives of β-cyclodextrin. J. Hazard. Mater. 2015. 283: 643. https://doi.org/10.1016/j.jhazmat.2014.10.012

16. Trofymchuk I.M., Roik N.V., Belyakova L.A. Structural variety and adsorptive properties of mesoporous silicas with immobilized oligosaccharide groups. Nanoscale Res. Lett. 2017. 12(1): 307. https://doi.org/10.1186/s11671-017-2072-2

17. Roik N.V., Belyakova L.A., Trofymchuk I.M., Dziazko M.O., Oranska O.I. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties. J. Nanopart. Res. 2017. 19(9): 317. https://doi.org/10.1007/s11051-017-3999-z

18. Azrague K., Pradines V., Bonnefille E., Claparols C., Maurette M.T., Benoit-Marquie F. Degradation of 2,4-dihydroxybenzoic acid by vacuum UV process in aqueous solution: kinetic, identification of intermediates and reaction pathway. J. Hazard. Mater. 2012. 237-238: 71. https://doi.org/10.1016/j.jhazmat.2012.07.046

19. Tao Y., Han L., Han Y., Liu Z. A combined experimental and theoretical analysis on molecular structure and vibrational spectra of 2,4-dihydroxybenzoic acid. Spectrochim. Acta A. 2015. 137: 1078. https://doi.org/10.1016/j.saa.2014.08.151

20. Vecchio S., Brunetti B. Thermochemical study of 2,4-, 2,6- and 3,4-dihydroxybenzoic acids in the liquid phase using a TG apparatus. Thermochim. Acta. 2011. 515: 84. https://doi.org/10.1016/j.tca.2011.01.001

21. Carrott P.J.M., Marques L.M., Ribeiro Carrott M.M.L. Core-shell polymer aerogels prepared by co-polymerisation of 2,4-dihydroxybenzoic acid, resorcinol and formaldehyde. Microporous Mesoporous Mater. 2012. 158: 170. https://doi.org/10.1016/j.micromeso.2012.03.040

22. McLachlan J., Craigie J.S. Antialgal activity of some simple phenols. J. Phycol. 1966. 2(4): 133. https://doi.org/10.1111/j.1529-8817.1966.tb04609.x

23. Chou C.-H. Comparative phytotoxic nature of leachate from four subtropical grasses. J. Chem. Ecol. 1989. 15(7): 2149. https://doi.org/10.1007/BF01207445

24. Benfeito S., Rodrigues T., Garrido J., Borges F., Garrido E.M. Host-guest interaction between herbicide oxadiargyl and hydroxypropyl-β-cyclodextrin. The Scientific World Journal. 2013. 13: 1. https://doi.org/10.1155/2013/825206

25. Belyakova L.A., Il'in V.G. Ion-exchange properties of crystalline polysilicic acids. Theor. Exp. Chem. 1976. 11(3): 278. https://doi.org/10.1007/BF00525967

26. Helfferich F.G. Ion Exchange. (New York: McGraw-Hill, 1962).

27. Schindler G.K., Kamber H.R. Die Acidität von Silanolgruppen. Vorläufige Mitteillung. Helv. Chim.Acta. 1968. 51(7): 1781. https://doi.org/10.1002/hlca.19680510738

28. Gupta S.S., Bhattacharyya K.G. Adsorption of Ni(II) on clays. J. Colloid Interface Sci. 2006. 295(1): 21. https://doi.org/10.1016/j.jcis.2005.07.073

29. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918. 40(9): 1361. https://doi.org/10.1021/ja02242a004

30. Freundlich H., Heller W.J. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc. 1939. 61(8): 2228. https://doi.org/10.1021/ja01877a071

31. Sverdlova O.V. Electronic Spectra in Organic Chemistry. (Leningrad: Nauka, 1985). [in Russian].

32. Charykov A.K. Mathematical Processing of Chemical Analysis Results. (Leningrad: Chemistry, 1984). [in Russian].

33. Lazarev A.N. Vibrational Spectra and Structure of Silicates. (Leningrad: Nauka, 1968). [in Russian].

34. Noll W. The silicate bond from the standpoint of electronic theory. Angew. Chem. Int. Ed. 1963. 2(2): 73. https://doi.org/10.1002/anie.196300731

35. Belyakova L.A., Kazdobin K.A., Belyakov V.N., Ryabov S.V., Danil de Namor A.F. Synthesis and properties of supramolecular systems based on silica. J. Colloid Interface Sci. 2005. 283(2): 488. https://doi.org/10.1016/j.jcis.2004.09.012

36. Belyakova L.A., Belyakov V.N., Vasilyuk S.L., Shvets O.M. The influence of grafted b-cyclodextrin on the sorption activity of silica gel to toxic metal ions. Reports of NAS of Ukraine. 2016. 3: 69. [in Russian]. https://doi.org/10.15407/dopovidi2016.03.069

37. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998. 98(5): 1743. https://doi.org/10.1021/cr970022c

38. Belyakov V.N., Belyakova L.A., Varvarin A.M., Khora O.V., Vasilyuk S.L., Kazdobin K.A., Maltseva T.V., Kotvitskyy A.G., Danil de Namor A.F. Supramolecular structures on silica surfaces and their adsorptive properties. J. Colloid Interface Sci. 2005. 285(1): 18. https://doi.org/10.1016/j.jcis.2004.11.027

39. Bellamy L.J. Advances in Infrared Group Frequencies. (London: Methuen, 1968).

40. Smith A.L. Applied Infrared Spectroscopy. (New York: John Wiley & Sons, 1982).

41. Rao C.N.R. Ultra-violet and Visible Spectroscopy. Chemical Applications. (London: Butterworths, 1961).

42. Uekama K., Hirayama F., Irie T. Cyclodextrin drug carrier systems. Chem. Rev. 1998. 98(5): 2045. https://doi.org/10.1021/cr970025p

43. Belyakova L.A., Lyashenko D.Yu., Grebenyuk A.G., Dzyubenko L.S. "β-Cyclodextrine - benzene carboxylic acid" inclusion complexes: stoichiometry, thermodynamics of complexation, stability. Surface. 2009. 1(16): 58. [in Russian].




DOI: https://doi.org/10.15407/hftp10.02.118

Copyright (©) 2019 L. A. Belyakova, D. Yu. Lyashenko, N. V. Roik, I. M. Trofymchuk, O. M. Shvets

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.