Photocatalytic properties of polyethersulfonic membranes modified with SnO2 nanoparticles
DOI: https://doi.org/10.15407/hftp10.02.135
Abstract
The present study aims to obtain membranes with photocatalytic properties by means of tin(IV) oxide immobilization on their surface to prevent fouling. Polyethersulfone membranes have been modified by polyelectrolyte complexes and SnO2 nanoparticles by “layer-by-layer” method. Trans-cinnamic and hydrocinnamic acids have been grafted to the surface of the membranes by the amide bond formation. Modification of membranes by nanoparticles has been confirmed by methods of scanning electron microscopy, energy dispersion spectroscopy and electrokinetic analysis. All membranes have been characterized by isoelectic point in the range of pH 4.5–5.0, positive zeta-potential in acid medium and negative one in alkaline medium. The adsorption, photocatalytic and transport properties of the membranes have been investigated using Rhodamine G. It has been shown that the immobilization of the nanoparticles of the tin(IV) oxide reduces the adsorption of the dye on the surface of the membranes twofold. It has been confirmed that membrane modification leads to the appearance of photocatalytic properties. Thus, membranes with nanoparticles of tin(IV) oxide are characterized by a high degree of dye decomposition of 40–50 % during 1.5 h the initial concentration of Rhodamine G of 1.2·10–3 %. Kinetics of dye decomposition could be described by pseudo-first rate according to an Langmuir-Hinshelwood equation. It has been found that the grafting of trans- and hydrocinnamic acids affects the pH optimum of membranes photocatalytic activity. Notably, the highest photocatalytic activity of membrane with immobilized SnO2 nanoparticles is observed in an acidic media at pH 3.0, while after trans- and hydrocinnamic acids grafting the pH optimum is shifted to alkaline and neutral media (pH 9.0 and 7.0), respectively. It has been shown that modified membranes exhibit stable flux in the process of dye nanofiltration and high levels of its rejection (70–90 %).
Keywords
References
1. Geng Z., Yang X., Boo C., Zhu S., Lu Y., Fan W., Huo M., Elimelech M., Yang X. Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. J. Membr. Sci. 2017. 529: 1. https://doi.org/10.1016/j.memsci.2017.01.043
2. Zhang X., Ren P.F., Yang H.C., Wan L.S., Xu Z.K. Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Appl. Surf. Sci. 2016. 360: 291. https://doi.org/10.1016/j.apsusc.2015.11.015
3. Yang H.C., Wu M.B., Li Y.J., Chen Y.F., Wan L.S., Xu Z.K. Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. J. Appl. Polym. Sci. 2016. 133(32): 1. https://doi.org/10.1002/app.43792
4. Leong S., Razmjou A., Wang K., Hapgood K., Zhang X., Wang H. TiO2 based photocatalytic membranes: A review. J. Membr. Sci. 2014. 472: 167. https://doi.org/10.1016/j.memsci.2014.08.016
5. Konovalova V., Kolesnyk I., Ivanenko O., Burban A. Fe2+ removal from water using PVDF membranes, modified with magnetite nanoparticles, by polyelectrolyte enhanced ultrafiltration. Environment Protection Engineering. 2018. 21(1): 39. https://doi.org/10.17512/ios.2018.1.4
6. Kolesnyk I., Konovalova V., Kharchenko K., Burban A., Knozowska K., Kujawski W., Kujawa J. Improved antifouling properties of polyethersulfone membranes modified with α-amylase entrapped in Tetronic® micelles. J. Membr. Sci. 2019. 570-571: 436. https://doi.org/10.1016/j.memsci.2018.10.064
7. Konovalova V., Guzikevich K., Burban A., Kujawski W., Jarzynka K., Kujawa J. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane. Carbohydr. Polym. 2016. 152: 710. https://doi.org/10.1016/j.carbpol.2016.07.065
8. Song H., Shao J., Wang J., Zhong X. The removal of natural organic matter with LiCl-TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. Desalination. 2014. 344: 412. https://doi.org/10.1016/j.desal.2014.04.012
9. Laohaprapanon S., Vanderlipe A.D., Doma B.T., You S.J. Self-cleaning and antifouling properties of plasma-grafted poly(vinylidene fluoride) membrane coated with ZnO for water treatment. J. Taiwan Inst. Chem. Eng. 2017. 70: 15. https://doi.org/10.1016/j.jtice.2016.10.019
10. Li R., Ren Y., Zhao P., Wang J., Liu J., Zhang Y. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. J. Hazard. Mater. 2019. 365: 606. https://doi.org/10.1016/j.jhazmat.2018.11.033
11. Pastrana-Martínez L.M., Morales-Torres S., Figueiredo J.L., Faria J.L., Silva A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015. 77: 179. https://doi.org/10.1016/j.watres.2015.03.014
12. Xu Z., Wu T., Shi J., Teng K., Wang W., Ma M., Li J., Qian X., Li C., Fan J. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J. Membr. Sci. 2016. 520: 281. https://doi.org/10.1016/j.memsci.2016.07.060
13. Zinadini S., Rostami S., Vatanpour V., Jalilian E. Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Membr. Sci. 2017. 529: 133. https://doi.org/10.1016/j.memsci.2017.01.047
14. Bai H., Zan X., Zhang L., Sun D.D. Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Sep. Purif. Technol. 2015. 156: 922. https://doi.org/10.1016/j.seppur.2015.10.016
15. Yu S., Wang Y., Sun F., Wang R., Zhou Y. Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation. Chem. Eng. J. 2018. 337: 183.nhttps://doi.org/10.1016/j.cej.2017.12.093
16. Dzhodzhyk O., Kolesnyk I., Konovalova V., Burban A. Modified polyethersulfone membranes with photocatalytic properties. Chem. Chem. Technol. 2017. 11(3): 377. https://doi.org/10.23939/chcht11.03.277
17. Coto M., Troughton S.C., Duan J., Kumar R.V., Clyne T.W. Development and assessment of photo-catalytic membranes for water purification using solar radiation. Appl. Surf. Sci. 2018. 433: 101. https://doi.org/10.1016/j.apsusc.2017.10.027
18. Mansourpanah Y., Madaeni S.S., Rahimpour A., Farhadian A., Taheri A.H. Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: Performance, characterization and fouling-resistant capability. J. Membr. Sci. 2009. 330: 297. https://doi.org/10.1016/j.memsci.2009.01.001
19. Zhang H., Quan X., Chen S., Zhao H., Zhao Y. Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water. Sep. Purif. Technol. 2006. 50(2): 147. https://doi.org/10.1016/j.seppur.2005.11.018
20. Alkaim A.F., Aljeboree A.M., Alrazaq N.A., Baqir S.J., Hussein F.H., Lilo A.J. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian J. Chem. 2014. 26(24): 8445. https://doi.org/10.14233/ajchem.2014.17908
21. Reza K.M., Kurny A., Gulshan F. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci. 2017. 7(4): 1569. https://doi.org/10.1007/s13201-015-0367-y
22. Chen Y., Yang S., Wang K., Lou L. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol. A. 2005. 172(1): 47. https://doi.org/10.1016/j.jphotochem.2004.11.006
23. Rehman S., Ullah R., Butt A.M., Gohar N.D. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009. 170(2-3): 560. https://doi.org/10.1016/j.jhazmat.2009.05.064
DOI: https://doi.org/10.15407/hftp10.02.135
Copyright (©) 2019 I. S. Kolesnyk, O. Ya. Dzhodzhyk, V. V. Konovalova, H. A. Sorokin, T. H. Meshkova, A. F. Burban, S. M. Tsaryk
This work is licensed under a Creative Commons Attribution 4.0 International License.