Chemistry, Physics and Technology of Surface, 2019, 10 (2), 166-173.

Study of the effect of detonation nanodiamonds on the microviscosity of rat erythrocyte membranes by the spin probe method



DOI: https://doi.org/10.15407/hftp10.02.166

N. T. Kartel, L. V. Ivanov, A. N. Lyapunov, O. A. Nardid, Ya. O. Cherkashina, E. V. Shcherbak, O. A. Gurova, A. V. Okotrub

Abstract


The method of spin probes investigated the effect of various concentrations of detonation nanodiamonds (DND) 25, 50 and 75 µg/ml on the microviscosity of rat erythrocyte membranes. For this, a lipophilic spin probe based on palmetic acid was introduced into the erythrocyte membrane. The introduction of DND into a suspension of erythrocytes at a concentration of 25 μg/ml did not lead to any changes in the microviscosity of erythrocyte membranes within the experimental error. At the same time, an increase in the concentration of DND in suspension of erythrocytes to 50 and 75 µg/ml resulted in to a marked decrease in the microviscosity of erythrocyte membranes (increase in membrane fluidity) by 20 and 28 %, respectively. A noticeable decrease in the intensity of the EPR spectrum after 4 h of incubation of erythrocytes with DNA (50 µg/ml) indicates the antioxidant activity of nanodiamond — the ability to be an electron donor and restore the nitroxyl stable radical (spin probe) to hydroxylamine. Physiologically, an increase in erythrocyte membrane turnover is of great importance for the organism, since allows red blood cells to better penetrate thin or narrowed capillaries and more efficiently nourish the tissues and organs of the body with oxygen. In addition, an increase in cell membrane fluidity increases the activity of membrane enzymes, which should lead to activation of metabolic and regulatory processes in cells and in the body as a whole. Perhaps this may explain the successful use of DND in oncology, treatment of the gastrointestinal tract, etc. At the same time, an excessive increase in the fluidity of cell membranes at high concentrations of DND can lead to irreversible changes in the native structure of cell membranes.

Keywords


spin probe method; erythrocyte membranes; detonation nanodiamonds; membrane microviscosity; singlet; antioxidant activity

Full Text:

PDF (Русский)

References


1. Yakovlev R.Yu., Solomatin A.S., Leonidov N.B., Kulakova I.I., Lisichkin G.V. Detonation nanodiamond - a promising carrier for the creation of drug delivery systems. Russ. Chem. J. 2012. 56(56): 114. [in Russian].

2. Badun G.A., Chernysheva M.G., Yakovlev R.Y., Leonidov N.B., Semenenko M.N., Lisichkin G.V. A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method. Radiochim. Acta. 2014. 102(10): 941. https://doi.org/10.1515/ract-2013-2155

3. Yakovlev R.Y., Lisichkin G.V., Leonidov N.B. Development and investigation of functionalized nanodiamonds for pharmaceutical and medical applications. In: Mediterranean - East-Europe Meeting Multifunctional Nanomaterials: NanoEuroMed 2011. (Uzhgorod, 2011). P. 169.

4. Yakovlev R.Yu., Badun G.A., Chernysheva M.G., Leonidov N.B., Lisichkin G.V. Tritium labeling nanodiamond and its applications in transmembrane diffusion and biodistribution studies. In: Intern. Conf. Diamond & Carbon Materials. (Riva del Garda, Italy, 2013). Poster 1.096.

5. Dolmatov V.Yu. Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 2001. 70(7): 607. [in Russian]. https://doi.org/10.1070/RC2001v070n07ABEH000665

6. Puzyr A.P., Bondar V.S., Bukayemsky A.A., Selyutin G.E., Kargin V.F. Physical and chemical properties of modified nanodiamonds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. 2005. 192: 261. https://doi.org/10.1007/1-4020-3322-2_20

7. Soltamova A.A., Il'in I.V., Shakhov F.M., Kidalov S.V., Vul' A.Ya., Yavkin B.V., Mamin G.V., Orlinskii S.B., Baranov P.G. Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds. JETP Letters. 2010. 92(2): 102. [in Russian]. https://doi.org/10.1134/S0021364010140067

8. Samsonenko N.D., Zhmykhov G.V., Zon V.Sh., Aksenov V.K. Features of the electron paramagnetic resonance of the surface centers of diamond. Russ. J. Structural. Chem. 1979. 20(6): 1116. [in Russian]. https://doi.org/10.1007/BF00753210

9. Belobrov P.I., Gordeev S.K., Petrakovskaya É.A., Falaleev O.V. Paramagnetic properties of nanodiamond. Doklady Physics. 2001. 46(7): 459. [in Russian]. https://doi.org/10.1134/1.1390396

10. Liechtenstein G.I. The Method of Spin Labels in Molecular Biology. (Moscow: Science, 1974). [in Russian].

11. Berliner L. The Method of Spin Labels. Theory and Applications. (Moscow: Mir, 1979). [in Russian].

12. Ivanov L.V., Lyapunov A.N., Kartel N.T., Nardid O.A., Okotrub A.V., Kirilyuk I.A., Cherkashina Ya.O. Delivery of lipophilic spin probes by carbon nanotubes to erythrocytes and blood plasma. Surface. 2014. 6(21): 292. [in Russian].

13. Kartel N.T., Ivanov L.V., Lyapunov A.N., Nardid O.A., Okotrub A.V., Kirilyuk I.A., Cherkashina Ya.O. Estimation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes. Reports of the National Academy of Sciences of Ukraine. 2015. 3: 114. [in Russian]. https://doi.org/10.15407/dopovidi2015.03.114

14. Puzyr A.P., Neshumaev D.A., Bondar V.S., Tarskikh S.V., Makarskaya G.V., Dolmatov V.Yu. Destruction of human blood cells in the interaction with detonation nanodiamonds in vitro experiments. Biofizika. 2005. 50(1): 94. [in Russian].

15. Puzyr A.P., Tarskikh S.V., Makarskaya G.V., Chiganova G., Larionova I.S., Detkov P.Ya., Bondar V.S. The damaging effect of detonation diamonds on the cells of white and red human blood in vitro. Reports of the Russian Academy of Sciences. 2002. 385(4): 561. [in Russian]. https://doi.org/10.1023/A:1019959322589




DOI: https://doi.org/10.15407/hftp10.02.166

Copyright (©) 2019 N. T. Kartel, L. V. Ivanov, A. N. Lyapunov, O. A. Nardid, Ya. O. Cherkashina, E. V. Shcherbak, O. A. Gurova, A. V. Okotrub

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.