Chemistry, Physics and Technology of Surface, 2019, 10 (2), 174-189.

The Influence of small concentrations of carbon nanotubes on the structuralization in matrices of different nature



DOI: https://doi.org/10.15407/hftp10.02.174

Yu. I. Sementsov, N. T. Kartel

Abstract


The results of the study on the strength and structural characteristics of matrices of various nature are presented, namely: cement paste, sand-cement mixture, hydroxyapatite (GAP), lamellar samples of fiberglass on an epoxy binder (resin of the brand LR 285, polymerization catalyst LH 286), fluoroplastic (PTFE), dependent on the content of the reinforcing component - multilayer carbon nanotubes (CNT), and PTFE, filled with aerosil (A300). For reinforcement of matrices, multilayer CNTs, synthesized by the method of catalytic CVD synthesis using three-component oxide iron-containing catalysts, were used. Mechanical tests of tensile and flexure composites were performed on a 2167 P 50 burst machine with a continuous automatic recording of the "load-deformation" diagram on a PC. The analysis of the sizes of CNT agglomerates was carried out using photon correlation spectroscopy (FCS). The particle size distribution function was determined on a ZetaSizer-3 (Malvern Instruments, UK) spectrometer with a correlator 7032 and a 25 MW (length wavelength λ = 633 nm) helium-neon laser LH-111. The dimensions of the coherent scattering regions were determined by the method of X-ray diffraction (DRON-3M,     λСо = 0.179 nm).

The dependences of the strong characteristics of the systems filled with CNT: the cement paste, the sand-cement mixture, the layered samples of fiberglass on the epoxy binder, the hydroxyapatite (GAP), the PTFE, and the PTFE filled with A300 on the size of the structural regions formed by nanoscale filler. For "liquid" systems (cement paste, cement-sand mixture, epoxy resin), these are agglomerates of CNT, the sizes of which are nonlinearly dependent on the concentration of CNT. For "solid": GAP - is porosity, PTFE - the size of the regions of coherent scattering of    X-rays.

It is shown that for low concentrations of nanosized fillers, the strength characteristics of composite materials are linearly increased from the resizing of the structural regions of nanosized fillers. The experimental dependences obtained are confirmed by theoretical calculations [40] on the determining role of nanosized regions of matrices, which are formed in interaction with nanosized filler, that is, the response of the matrix is proportional to the surface area of the interphase boundary.


Keywords


multilayer carbon nanotubes (CNT); agglomerates of CNT; dispersions of CNT; composite materials filled with CNT; strength characteristics

Full Text:

PDF (Українська)

References


1. Kaseem M., Hamad K., Gun Ko Y. Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur. Polym. J. 2016. 79: 36. https://doi.org/10.1016/j.eurpolymj.2016.04.011

2. Yang X., Zou T., Shi Ch., Liu E., He Ch., Zhao N. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Materials Science and Engineering: A. 2016. 660: 11. https://doi.org/10.1016/j.msea.2016.02.062

3. Banks-Sills L., Shiber D.G., Fourman V., Eliasi R., Shlayer A. Experimental determination of mechanical properties of PMMA reinforced with functionalized CNTs. Composites Part B: Engineering. 2016. 95: 335. https://doi.org/10.1016/j.compositesb.2016.04.015

4. Feng W., Zhang L., Liu Y., Li X., Cheng L., Zhou Sh., Bai H. The improvement in the mechanical and thermal properties of SiC/SiC composites by introducing CNTs into the PyC interface. Materials Science and Engineering: A. 2015. 637: 123. https://doi.org/10.1016/j.msea.2015.04.006

5. Nam T.H., Goto K., Yamaguchi Yu., Premalal E.V.A., Shimamura Y., Inoue Y., Naito K., Ogihara Sh. Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites. Composites Part A: Applied Science and Manufacturing. 2015. 76: 289. https://doi.org/10.1016/j.compositesa.2015.06.009

6. Kalgin A.V., Kalinin Yu.E., Kudrin A.M., Malyuchenkov A.V., PaninYu.V., Sitnikov A.V The prospects for the development of the production of aircraft parts made of composite materials. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2011. 112: 147. [in Russian].

7. Savin S.P. Application of modern polymeric composite materials in the design of MS021 airplane family. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2012. 14(4/2): 686. [in Russian].

8. Cowan T., Acar E., Francolin C. Analysis of Causes and Statistics of Commercial Jet Plane Accidents between 1983 and 2003. Mechanical and Aerospace Engineering Department University of Florida. 2006. ST1: 1.

9. Zazimko V. Use of composite materials as the driving force of the branches of the military-industrial complex. Novyy oboronnyy zakaz. Strategii. 2017. 2(44): 56. [in Russian].

10. Paunikar Sh., Kumar S. Effect of CNT waviness on the effective mechanical properties of long and short CNT reinforced composites. Computational Materials Science. 2014. 95: 21. https://doi.org/10.1016/j.commatsci.2014.06.034

11. Makunin A.V., Chechenin N.G. Polymer-nanocarbon materials for space technology. Part I. Synthesis and properties of nanocarbon structures: A study guide. (Moscow: Universitetskaya kniga, 2011). [in Russian].

12. Tian Y., Zhang H., Zhang Z. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites. Composites Part A: Applied Science and Manufacturing. 2017. 98: 1. https://doi.org/10.1016/j.compositesa.2017.03.007

13. Scarselli G., Corcione C., Nicassio F., Maffezzoli A. Adhesive joints with improved mechanical properties for aerospace applications. International Journal of Adhesion and Adhesives. 2017. 75: 178. https://doi.org/10.1016/j.ijadhadh.2017.03.012

14. Lin S., Anwer M.A.S., Zhou Y., Sinha A., Carson L., Naguib H. Evaluation of the thermal, mechanical and dynamic mechanical characteristics of modified graphite nanoplatelets and graphene oxide high-density polyethylene composites. Composites Part B: Engineering. 2018. 132: 61. https://doi.org/10.1016/j.compositesb.2017.08.010

15. Liang M., Wong K.L. Study of mechanical and thermal performances of epoxy resin filled with micro particles and nanoparticles. Energy Procedia. 2017. 110: 156. https://doi.org/10.1016/j.egypro.2017.03.121

16. Irez A.B., Bayraktar E., Miskioglu I. Design and mechanical-physical properties of epoxy-rubber based composites reinforced with nanoparticles. Procedia Engineering. 2017. 184: 486. https://doi.org/10.1016/j.proeng.2017.04.119

17. Eesaee M., Shojaei A. Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Composites Part A: Applied Science and Manufacturing. 2014. 63: 149. https://doi.org/10.1016/j.compositesa.2014.04.008

18. Anbusagar N.R.R., Palanikumar K., Giridharan P.K. Study of sandwich effect on nanoclay modified polyester resin GFR face sheet laminates. Composite Structures. 2015. 125: 336. https://doi.org/10.1016/j.compstruct.2015.02.016

19. Boumaza M., Khan R., Zahrani S. An experimental investigation of the effects of nanoparticles on the mechanical properties of epoxy coating. Thin Solid Films. 2016. 620: 160. https://doi.org/10.1016/j.tsf.2016.09.035

20. Banks-Sills L., Guy Shiber D., Fourman V., Eliasi R., Shlayer A. Experimental determination of mechanical properties of PMMA reinforced with functionalized CNTs. Composites Part B: Engineering. 2016. 95: 335. https://doi.org/10.1016/j.compositesb.2016.04.015

21. Rakov E.G. Nanotubes and fullerenes: A study guide. (Moscow: Universitetskaya kniga, Logos, 2006). [in Russian].

22. Treacy M.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996. 381: 678. https://doi.org/10.1038/381678a0

23. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology. 2009. 69(10): 1486. https://doi.org/10.1016/j.compscitech.2008.06.018

24. Bokobza L. Multiwall carbon nanotube elastomeric composites: A review. Polymer. 2007. 48: 4907. https://doi.org/10.1016/j.polymer.2007.06.046

25. Ukrainian Standard: TU U 24.1-03291669-009:2009. Carbon Nanotubes. [in Ukrainian].

26. Sementsov Yu.I., Melezhik A.V., Prikhodko G.P. Synthesis, structure, and physico-chemical properties of nanocarbon materials. In: Physical Chemistry of Nanomaterials and Supramolecular Structures. V. 2. (Kyiv: Naukova Dumka, 2007). P. 116. [in Russian].

27. Patent UA 17387. C01B11 / 00 D01F9 | 12. Yanchenko V.V., Kovalenko O.O., Sementsov Yu.I., Melezhik O.V. Method for obtaining catalysts for chemical vapor deposition of carbon nanotubes. 2006. [in Ukrainian].

28. Wypych G. Hand book of Plasticizers. (Toronto, New York: Chem. Tec. Publishing, 2004).

29. Vauchskiy M.N. Directional formation of an ordered supramolecular crystal hydrate structure of hydrated mineral binders. Vestnik grazhdanskikh ingenerov. 2005. 2(3): 44. [in Russian].

30. Yudovich M.E., Ponomarev A.N. Nanomodification of plasticizers. Regulation of their properties and strength characteristics of cast concrete. Stroyprofil. 2007. 6: 49. [in Russian].

31. Sementsov Yu.I., Kovalska E.O., Kartel N.T., Chunihin O.Yu. Deagglomeration of carbon nanotubes in aqueous solutions of melamineformaldehyde, naphthaleneformaldehyde, lignosulfonate plasticizers. Him. Fiz. Tehnol. Poverhni. 2016. 7(2): 202. [in Ukrainian]. https://doi.org/10.15407/hftp07.02.202

32. Report on scientific and technical work under the state order «Development of technological bases for the production of mechanically activated concrete reinforced with nano-carbon materials». (No. of state registration 0113U007588, Chuiko Institute of Surface Chemistry NAS of Ukraine, 2013). [in Ukranian].

33. Cherniuk O., Dovbeshko G., Zhuravskyi S. Study of glass-reinforced plastic filled by surface modified multiwall carbon nanotubes. In: Ukrainian Conference with International Participation «Chemistry, physics and technology of surface» and Workshop «Metal-based biocompatible nanoparticles: synthesis and applications». (15-17 May 2019, Ukraine). P. 46.

34. Sementsov Yu., Prikhod'ko G., Kartel N., Tsebrenko M., Aleksyeyeva T., Ulynchych N. Carbon nanotubes filled composite materials. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. (Springer Science + Bussines Media, 2011). P. 183. https://doi.org/10.1007/978-94-007-0899-0_16

35. Sementsov Yu.I., Prikhodko G.P., Kartel M.T., Makhno S.M., Grabovsky Yu.E., Alekseev O.M., Pinchuk-Rugal T.M. Composites of polypropylene - carbon nanotubes: structural features, physical and chemical properties. Surface. 2012. 4(19): 203. [in Ukrainian].

36. Sementsov Yu., Prikhod'ko G., Kartel N., Aleksyeyeva T., Tsebrenko M. Polypropylene fibers with carbon nanotubes: mechanical properties and biocompatibility. Him. Fiz. Tehnol. Poverhni. 2013. 4(2): 191. https://doi.org/10.15407/hftp04.02.191

37. Patent UA 81928. Yanchenko V.V., Sementsov Yu.I., Piatkovskyi M.L., Melezhyk O.V. Process for the preparation of composite material based on polytetrafluoroethylene. 2008. [in Ukranian].

38. Sementsov Yu.I., Pyatkovsky M.L., Gavrilyuk N.A., Prikhodko G.P., Kartel M.T., Grabovsky Yu. Nanocomposites of fluoroplastic 4 - carbon nanotubes. Obtaining, structure and mechanical properties. Khimichna promyslovistʹ Ukrayiny. 2009. 5: 59. [in Ukrainian].

39. Kartel M., Sementsov Yu., Mahno S., Trachevskiy V., Wang Bo Polymer composites filled with multiwall carbon nanotubes. Universal Journal of Materials Science. 2016. 4(2): 23. https://doi.org/10.13189/ujms.2016.040202

40. Malagù M., Goudarzi M., Lyulin A., Benvenuti E., Simone A. Diameter-dependent elastic properties of carbon nanotube-polymer composites: Emergence of size effects from atomistic-scale simulations. Composites Part B: Engineering. 2017. 131: 260. https://doi.org/10.1016/j.compositesb.2017.07.029

41. Cen-Puca M., Oliva-Avilés A.I., Avilés F. Thermoresistive mechanisms of carbon nanotube/polymer composites. Physica E. 2018. 95: 41. https://doi.org/10.1016/j.physe.2017.09.001

42. Danilchenko S.N., Kukharenko O.G., Moseke C., Protsenko I.Yu., Sukhodub L.F., Sulkio‐Cleff B. Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst. Res. Technol. 2002. 37(11): 1234. https://doi.org/10.1002/1521-4079(200211)37:11<1234::AID-CRAT1234>3.0.CO;2-X

43. Garkusha O.M., Makhno S.M., Prikhodko G.P., SementsovYu.I., Kartel M.T. Electro-thermophysical properties of the polypropylene-carbon nanotube system. Chemistry, Physics and Surface Technology. 2009. 15: 328. [in Ukrainian].

44. Sementsov Yu.I., Prikhodko G.P., Kartel M.T., Makhno S.M., Grabovsky Yu.E., Alekseev O.M., Pinchuk-Rugal T.M. Composites polypropylene - carbon nanotubes: structural features, physical and chemical properties. Surface. 2012. 4(19): 203. [in Ukrainian].

45. Garkusha O.M., Makhno S.N., Prikhodko G.P., Sementsov Yu.I. Kinetic properties of the polytetrafluoroethylene - carbon nanotubes composites. Chemistry, Physics and Surface Technology. 2008. 14: 140. [in Russian].

46. Report on the research work of the target comprehensive program of fundamental research of the National Academy of Sciences of Ukraine «Fundamental problems of the creation of new nanomaterials and nanotechnologies», project «Creation of composite materials and coatings «polymer-sp2-carbon nanoparticles» for the screening of electromagnetic fields». (State registration number 0115U001420, Chuiko Institute of Surface Chemistry of NAS of Ukraine, 2017).




DOI: https://doi.org/10.15407/hftp10.02.174

Copyright (©) 2019 Yu. I. Sementsov, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.