Chemistry, Physics and Technology of Surface, 2019, 10 (2), 190-198.

Forming porous structure of sorbents based on metal-organic frameworks



DOI: https://doi.org/10.15407/hftp10.02.190

Ya. O. Shablovsky

Abstract


The paper deals with a relatively new type of three-dimensional sorbents that are called metal-organic frameworks. The chemical compounds of this kind can be regarded as crystal sponges since they are microporous solid phases with exclusively large area of accessible internal surface. The most expressive manifestation of the peculiarity of the metal-organic frameworks is the topological equivalence of the metal-organic frameworks with principally different chemical nature. This phenomenon is sometimes called an isoreticular paradox.

Such sorbents possess an exclusive identity of pores which is provided by the crystalline order in their structures. In its turn the crystalline order of the structure imposes severe restrictions on the geometry and topology of cavities in the structure frame and on the spatial symmetry of the structure itself. Revealing the characteristic features of structure forming in metal-organic coordination polymers enabled to estimate the relative frequencies of possible spatial structures of metal-organic frameworks. The isoreticular paradox originates from the finite number of formally possible Fedorov groups being aggravated by the sharply uneven distribution of the probabilities of these groups in real crystal structures.

An atomic configuration of a frame cavity is isomorphic to a concave polyhedron. The symmetry of such polyhedra is to comply with the crystal lattice. We have found eleven Hessel groups that correspond to possible cavity polyhedral and estimated the relative probabilities of cavity configurations in the frame structures. The structural design of framework sorbents should provide the topologic combinations of atomic complexes and molecular linkers providing the cavity configurations of the above mentioned eleven types and forming the centrosymmetric spatial structure.


Keywords


polymer sorbent; metal-organic framework; 3-dimensional structure; structural design

Full Text:

PDF (Русский)

References


1. Tagaev I.A., Tursunova S.U., Andriyko L.S. Investigation and selection of initial materials as possible sources for obtaining sorbents. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 432. [in Russian]. https://doi.org/10.15407/hftp09.04.432

2. Gryn S.V., Storchak Z.A., Levchyk V.M., Alekseev S.A., Yaremov P.S., Ilyin V.G. Titanosilicate Micro/Mesoporous TS-1/MCM-41Composites. Him. Fiz. Tehnol. Poverhni. 2010. 1(4): 415. [in Russian].

3. Pozhidaev Yu.N. Silicon-containing sorption materials: synthesis, properties and application. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya. 2014. 4(9): 7. [in Russian].

4. Rowsell J., Yaghi O.M. Metal-organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials. 2004. 73(1-2): 3. https://doi.org/10.1016/j.micromeso.2004.03.034

5. Butova V.V., Soldatov M.A., Guda A.A., Lomachenko K.A. Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016. 85(3): 280. [in Russian]. https://doi.org/10.1070/RCR4554

6. Tsitsishvili G., Tsitsishvili V. Porosity and Topology of Zeolite Structures. Him. Fiz. Tehnol. Poverhni. 2011. 2(3): 340. [in Russian].

7. Yaghi O.M., Kalmutzki M.J., Diercks C.S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks. (Weinheim: Wiley-VCH Verlag GmbH, 2019). https://doi.org/10.1002/9783527821099

8. Eddaoudi M., Moler D.B., Li H., Chen B., Reineke T.M., O'Keeffe M., Yaghi O.M. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research. 2001. 34(4): 319. https://doi.org/10.1021/ar000034b

9. O'Keeffe M., Yaghi O.M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014. 114(2): 1343. https://doi.org/10.1021/cr400392k

10. Baburin I.A., Blatov V.A., Carlucci L., Ciani G., Proserpio D.M. Interpenetrating metal-organic and inorganic 3D networks: A computer-aided systematic investigation. Part II. Analysis of the Inorganic Crystal Structure Database. Journal of Solid State Chemistry. 2005. 178(8): 2452. https://doi.org/10.1016/j.jssc.2005.05.029

11. Mak T., Zhou G.-D. Crystallography in modern chemistry. (New York: Wiley-Interscience, 1997).

12. Sunada T. Topological Crystallography. (Tokyo: Springer, 2013). https://doi.org/10.1007/978-4-431-54177-6

13. Banaru A.M. The critical coordination number in homomolecular crystals. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya. 2009. 50(2): 100. [in Russian]. https://doi.org/10.3103/S0027131409020023

14. Lord E.A., Banaru A.M. The number of generating elements in a spatial group of a crystal. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya. 2012. 53(2): 81. [in Russian]. https://doi.org/10.3103/S0027131412020034

15. Belov N.V. Notes on structural crystallography and fedorov symmetry groups. (Moscow: Nauka, 1986). [in Russian].




DOI: https://doi.org/10.15407/hftp10.02.190

Copyright (©) 2019 Ya. O. Shablovsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.