Structural and adsorption features of amorphous nanosilica modified by various addition of polymethylsiloxane
DOI: https://doi.org/10.15407/hftp10.03.203
Abstract
The aim of this study was to elucidate the effects of polymethylsiloxane (PMS) and pretreatment conditions on the behavior of bound water, as well the properties of the PMS/nanosilica blends. Amorphous nanosilica A-300 with addition of PMS hydrogel (PMS/A-300 weight ratio of 1:9 for dry matters) was studied in various dispersion media (air, chloroform alone and with addition of trifluoroacetic acid, TFAA) in comparison to PMS and A-300 alone and PMS/A-300 (1:1) using low-temperature 1H NMR spectroscopy and cryoporometry. Dried nanosilica and PMS alone and in the blends were characterized using microscopy, nitrogen adsorption, infrared spectroscopy, thermogravimetry, and quantum chemistry. It was shown that the properties of the blends depend not only on the components content but also on mechanical treatment causing stronger compaction of the secondary structures of nanoparticles (aggregates of nanoparticles and agglomerates of aggregates) with increasing mechanical loading. Note that a similar behavior of various blends with hydrophobic and hydrophilic nanostructured materials was observed after hydro-compaction under different mechanical loadings. Theoretical modelling shows that the structure of bound water located at a surface of hydrophilic and hydrophobic nanoparticles changes with compaction of aggregates because of changes in the confined space effects and polarity of bound water molecules. These results reflect a general regularity appearing at appropriate amount of added water and certain mechanical loading onto the blends of hydrophilic and hydrophobic nanostructured materials, which become hydrophilic but renew the hydrophobic properties after subsequent drying.
Keywords
References
1. Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).
2. Büchel K.H., Moretto H.-H., Woditsch P. Industrial Inorganic Chemistry. (Weinheim Wiley-VCH, 2000). https://doi.org/10.1002/9783527613328
3. Auner N., Weis J. Oganosilicon Chemistry VI. (Weinheim: Wiley-VCH, 2005). https://doi.org/10.1002/9783527618224
4. Basic Characteristics of Aerosil. Technical Bulletin Pigments. N 11. (Hanau: Degussa AG, 1997).
5. Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).
6. Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).
7. Vansant E.F., Van Der Voort P., Vrancken K.C. Characterization and Chemical Modification of the Silica Surface: Studies in Surface Science and Catalysis. V. 93. (Amsterdam: Elsevier, 1995). https://doi.org/10.1016/S0167-2991(06)81508-9
8. Chuiko A.A. Chemistry of Silica Surface. (Kiyv: UkrINTEI, 2001). [in Russian].
9. Chuiko A.A. Medical Chemistry and Clinical Application of Silicon Dioxide. (Kiyv: Naukova Dumka, 2003). [in Russian].
10. Cai Y., Li J., Yi L., Yan X., Li J. Fabricating superhydrophobic and oleophobic surface with silica nanoparticles modified by silanes and environment-friendly fluorinated chemicals. Appl. Surf. Sci. 2018. 450: 102. https://doi.org/10.1016/j.apsusc.2018.04.186
11. Zhu Y., Chen L., Zhang C., Guan Z. Preparation of hydrophobic antireflective SiO2 coating with deposition of PDMS from water-based SiO2-PEG sol. Appl. Surf. Sci. 2018. 457: 522. https://doi.org/10.1016/j.apsusc.2018.06.177
12. Zhao Y., Wen J., Ge Y., Zhang X., Shi H., Yang K., Gao X., Shi S., Gong Y. Fabrication of stable biomimetic coating on PDMS surface: Cooperativity of multivalent interactions. Appl. Surf. Sci. 2019. 469: 720. https://doi.org/10.1016/j.apsusc.2018.11.056
13. Conti J., De Coninck J., Ghazzal M.N. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface. Appl. Surf. Sci. 2018. 436: 234. https://doi.org/10.1016/j.apsusc.2017.12.017
14. Ghosh S.K. Functional Coatings. (Weinheim: Wiley-VCH Verlag GmbH, 2006).
15. Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006).
16. Protsak I.S., Henderson I.M., Tertykh V.A., Dong W., Le Z. Cleavage of organosiloxanes with dimethyl carbonate: a mild approach to graft-to-surface modification. Langmuir. 2018. 34(33): 9719. https://doi.org/10.1021/acs.langmuir.8b01580
17. Slinyakova B., Denisova T.I. Organosilicon Adsorbents: Preparation and Properties. (Kiyv: Naukova Dumka, 1988). [in Russian].
18. Wu L., Baghdachi J. Functional Polymer Coatings: Principles, Methods, and Applications. First Edition. (New York: John Wiley & Sons, 2015). https://doi.org/10.1002/9781118883051
19. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
20. Voronin E.F., Gun'ko V.M., Guzenko N.V., Pakhlov E.M., Nosach L.V., Malysheva M.L., Skubiszewska-Zięba J., Leboda R., Borysenko M.V., Chuiko A.A. Interaction of poly(ethylene oxide) with fumed silica. J. Colloid Interface Sci. 2004. 279(2): 326. https://doi.org/10.1016/j.jcis.2004.06.073
21. Gun'ko V.M., Leboda R., Skubiszewska-Zięba J., Goncharuk E.V., Nychiporuk Y.M., Zarko V.I., Blitz J.P. Influence of different treatments on characteristics of nanooxide powders alone or with adsorbed polar polymers or proteins. Powder Technology. 2008. 187(2): 146. https://doi.org/10.1016/j.powtec.2008.02.007
22. Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102
23. Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Nychiporuk Yu.M., Balakin D.Yu., Sternik D., Derylo-Marczewska A. Nanosilica modified by polydimethylsiloxane depolymerized and chemically bound to nanoparticles or physically bound to unmodified or modified surfaces: Structure and interfacial phenomena. J. Colloid Interface Sci. 2018. 529: 273. https://doi.org/10.1016/j.jcis.2018.06.019
24. Gun'ko V.M. Polymer composites with functionalized silica. In: Polymer Composites with Functionalized Nanoparticles. Synthesis, Interactions. (Properties and Applications, Elsevier, 2018). https://doi.org/10.1016/B978-0-12-814064-2.00004-4
25. Mark J.E., Allcock H.R., West R. Inorganic Polymers, Prentice Hall. (New York: Englewood, 1992).
26. Nikolaev V.G. Enterosgel: A novel organosilicon enterosorbent with a wide range of medical applications. In: Biodefence. Advanced Materials and Methods for Health Protection. (Dordrecht: Springer, 2011). https://doi.org/10.1007/978-94-007-0217-2_21
27. Shevchenko Yu.N., Dushanin B.M., Yashinina N.I. New silicon compounds - porous organosilicon materials for technology and medicine. Silicon for the Chemistry Industry III. (Sandefjord, Norway, 1996).
28. Lotters J.C., Olthuis W., Veltink P.H., Bergveld P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997. 7(3): 145. https://doi.org/10.1088/0960-1317/7/3/017
29. McDonald J.C., Duffy D.C., Anderson J.R., Chiu D.T., Wu H., Schueller O.J.A., Whitesides G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 2000. 21(1): 27. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.3.CO;2-3
30. Fadeev A.Y., Kazakevich Y.V. Covalently attached monolayers of oligo(dimethylsiloxane)s on silica: A siloxane chemistry approach for surface modification. Langmuir. 2002. 18(7): 2665. https://doi.org/10.1021/la011491j
31. Litvinov V.M., Barthel H., Weis J. Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR. Macromolecules. 2002. 35(11): 4356. https://doi.org/10.1021/ma0119124
32. Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk E.V., Gerashchenko I.I., Turova A.A., Mironyuk I.F., Leboda R., Skubiszewska-Zięba J., Janusz W. Comparative characterization of polymethylsiloxane hydrogel and silylated fumed silica and silica gel. J. Colloid Interface Sci. 2007. 308(1): 142. https://doi.org/10.1016/j.jcis.2006.12.053
33. Finiels A., Alonso B., Bousmina M., Brunel D., El Kadib A. Periodic mesoporous organosilicas derived from amphiphilic bulky polymethylsiloxane. New J. Chem. 2016. 40(5): 4132. https://doi.org/10.1039/C5NJ01824B
34. Li Y., Luo C., Li X., Zhang K., Zhao Y., Zhu K. Submicron / nano-structured icephobic surfaces made from fluorinated polymethylsiloxane and octavinyl-POSS. Appl. Surf. Sci. 2016. 360: 113. https://doi.org/10.1016/j.apsusc.2015.10.193
35. Li F., Ji C., Yun Z. Synthesis of alkyl polymethylsiloxane (APMS) by condensation reaction and study of properties as lubricants. J. Macromol. Sci. Part A Pure Appl. Chem. 2018. 55(4): 332. https://doi.org/10.1080/10601325.2018.1426388
36. Nagappan S., Joo J., Soo S., Hong S., Sik Y. Polymethylhydrosiloxane-based organic - inorganic hybrids for amphiphobic coatings. Compos. Interfaces. 2013. 20(1): 33. https://doi.org/10.1080/15685543.2013.762892
37. Sharaf M.A., Mark J.E. Modulus of randomly crosslinked polymethysiloxane networks, Polymeric Materials Science and Engineering. Proc. ACS Division of Polymeric Materials Science and Engineering. 1993. 68: 180.
38. Shimizu T., Kanamori K., Maeno A., Kaji H., Nakanishi K. Transparent ethylene-bridged polymethylsiloxane aerogels and xerogels with improved bending flexibility. Langmuir. 2016. 32(50): 13427. https://doi.org/10.1021/acs.langmuir.6b03249
39. Shimizu T., Kanamori K., Maeno A., Kaji H., Doherty C.M. Transparent ethenylene-bridged polymethylsiloxane aerogels: mechanical flexibility and strength and availability for addition reaction. Langmuir. 2017. 33(18): 4543. https://doi.org/10.1021/acs.langmuir.7b00434
40. Zhang H., Lana C., Ana F., Teixeira L., Michaela S. Water-based freeze casting: Adjusting hydrophobic polymethylsiloxane for obtaining hierarchically ordered porous SiOC. J. Am. Ceram. Soc. 2017. 100(5): 1907. https://doi.org/10.1111/jace.14782
41. Zu G., Shimizu T., Kanamori K., Zhu Y., Maeno A., Kaji H., Shen J., Nakanishi K. Transparent, super flexible doubly cross- linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano. 2018. 12(1): 521. https://doi.org/10.1021/acsnano.7b07117
42. Michurina S.V., Ischenko I.Y., Arkhipov S.A., Klimontov V.V, CherepanovaM.A., Korolev M.A., Rachkovskaya L.N., Zav E.L., Konenkov V.I. Melatonin − aluminum oxide - polymethylsiloxane complex on apoptosis of liver cells in a model of obesity and type 2 diabetes mellitus. Bulletin of Experimental Biology and Medicine. 2017. 164: 165. https://doi.org/10.1007/s10517-017-3949-x
43. Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. J. Non-Cryst. Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020
44. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Borysenko M.V., Kartel M.T., Charmas B. Water interactions with hydrophobic versus hydrophilic nanosilica. Langmuir. 2018. 34(12): 12145. https://doi.org/10.1021/acs.langmuir.8b03110
45. Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039
46. Turov V.V., Gun'ko V.M., Pakhlov E.M., Krupska T.V., Tsapko M.D., Charmas B., Kartel M.T. Influence of hydrophobic nanosilica and hydrophobic medium on water bound in hydrophilic components of complex systems. Colloids Surf. A. 2018. 552: 39. https://doi.org/10.1016/j.colsurfa.2018.05.017
47. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1982).
48. Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).
49. Neimark A.V., Ravikovitch P.I. Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 2001. 44/45: 697. https://doi.org/10.1016/S1387-1811(01)00251-7
50. Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci. 2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055
51. Strange J.H., Rahman M., Smith E.G. Characterization of porous solids by NMR. Phys. Rev. Lett. 1993. 71: 3589. https://doi.org/10.1103/PhysRevLett.71.3589
52. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461: 1. https://doi.org/10.1016/j.physrep.2008.02.001
53. Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Prog. Nucl. Magn. Reson. Spectrosc. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001
54. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
55. Stewart J.J.P. MOPAC2016, Stewart Computational Chemistry. 2017. http://OpenMOPAC.net.
56. Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013. 19(1): 1. https://doi.org/10.1007/s00894-012-1667-x
57. Zhurko G.A., Zhurko D.A. Chemcraft (version 1.8, build b536a). 2017. http://www.chemcraftprog.com.
58. Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Chem. Inform. 2012. 4(1): 17. https://doi.org/10.1186/1758-2946-4-17
59. Emsley J.W., Feeney J., Sutcliffe L.H. High Resolution Nuclear Magnetic Resonance Spectroscopy. (Oxford: Pergamon Press, 1965). https://doi.org/10.1016/B978-0-08-002792-0.50007-4
60. Chaplin M. Water structure and science. 2018. http://www1.lsbu.ac.uk/water/.
61. Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171. https://doi.org/10.1016/j.apsusc.2018.07.213
62. Turov V.V., Geraschenko I.I., Krupska T.V., Suvorova L. Nanochemistry in solution of problems of exo- and endo-ecology. (Stavropol: Zebra, 2017). [in Russian]).
63. Mikheev Yu.A., Guseva L.N., Davydov E.Ya., Ershov Yu.A. The hydration of hydrophobic substances. Russ. J. Phys. Chem. 2007. 81(12): 1897. https://doi.org/10.1134/S0036024407120011
64. Yaminsky V.V., Vogler E.A. Hydrophobic hydration. Current Opinion in Colloid & Interface Science. 2001. 6(4): 342. https://doi.org/10.1016/S1359-0294(01)00104-2
65. Widom B., Bhimalapuram P., Koga K. The hydrophobic effect. Phys. Chem. Chem. Phys. 2003. 5(15): 3085. https://doi.org/10.1039/b304038k
DOI: https://doi.org/10.15407/hftp10.03.203
Copyright (©) 2019 V. V. Turov, V. M. Gun'ko, T. V. Krupska, I. S. Protsak, E. M. Pakhlov
This work is licensed under a Creative Commons Attribution 4.0 International License.