Chemistry, Physics and Technology of Surface, 2019, 10 (3), 219-226.

Carbon sp3 hybridization bonds in composites “polymer – CNT”



DOI: https://doi.org/10.15407/hftp10.03.219

M. Kartel, L. Karachevtseva, W. Bo, Yu. Sementsov, V. Trachevskyi, O. Bakalinska, O. Lytvynenko, V. Onyshchenko

Abstract


The possibilities to enhance the properties of nanostructured surfaces have been demonstrated on “polymer-multiwall carbon nanotubes” composites. Carbon nanotubes are among the most anisotropic materials known and have extremely high values of the Young modulus. Influence of sp3 hybridization bonds on polymer crystallization and strengthening was investigated in composite films of polyethyleneimine, polyamide and polypropylene with multiwall carbon nanotubes. IR absorption maxima were measured after formation of composite “polyethyleneimine-carbon nanotubes” in the area of the sp3 hybridization bonds at the frequency of primary amino groups of polyethyleneimine. High IR absorption at frequencies of sp3 hybridization bonds of polypropylene, polyamide-6 with carbon nanotubes is determined by γω(CН) and γω(CH2) vibrations as a result of the formation of C-C bonds in the polymer chains, which increases the crystallization of polymers and the strength of the composites. The IR absorption peak dependences on the carbon nanotube content at frequencies of sp3 hybridization bonds are described by a 1D Gaussian curve for the diffusion equation in the electric field. Thus, the way to improve the strength properties of “polymer-CNTs” composites is the polymer crystallization as a result of the transformation of the C-C bonds in the polymer chains supported by the resonances of the primary amino groups, γω(CH) and  γω(CH2) in the electric field between the nanotubes and polymer matrix. Tensile strength for polyamide-6 composites at 0.25 % CNT increases 1.7 times and tensile deformation – 2.3 times.


Keywords


polymer composites; multiwall carbon nanotubes; sp3 bonds; electric field

Full Text:

PDF

References


1. Treacy M., Ebbesen T., Gibson J. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996. 381: 678. https://doi.org/10.1038/381678a0

2. Bokobza L. Multiwall carbon nanotube elastomeric composites. Polymer. 2007. 48(17): 4907. https://doi.org/10.1016/j.polymer.2007.06.046

3. Bauhofer W., Kovacs,J. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009. 69(10): 1486. https://doi.org/10.1016/j.compscitech.2008.06.018

4. Lacerda L., Bianco A., Prato M., Kostarelos M. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006. 58(14): 1460. https://doi.org/10.1016/j.addr.2006.09.015

5. Wilder W., Venema L., Rinzler A., Smalley, R., Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998. 391: 59. https://doi.org/10.1038/34139

6. Fan S., Chapline M., Franklin N., Tombler T., Cassell A., Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999. 283(5401): 512. https://doi.org/10.1126/science.283.5401.512

7. Wei B., Vajtai R., Ajayan P. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001. 79(8): 1172. https://doi.org/10.1063/1.1396632

8. Zou G., Jain H., Zhou H., Williams D., Zhou V, McCleskey D., Burrell A., Jia Q. Vertical connection of carbon nanotubes to silicon at room temperature using a chemical route. 2009. Carbon. 47(4): 933. https://doi.org/10.1016/j.carbon.2008.11.017

9. Kompan M., Aksyanov I. Near-UV narrow-band luminescence of polyethylene and polytetrafluoroethylene. Phys. Solid State. 2009. 51(5): 1083. https://doi.org/10.1134/S1063783409050291

10. Karachevtseva L., Kartel M., Lytvynenko, O., Onyshchenko, V., Parshyn K., Stronska O. Formation of carbon sp3 hybridization bonds in local electric fields of composites "polymer-CNT". Adv. Mater. Lett. 2017. 8: 322. https://doi.org/10.5185/amlett.2018.1964

11. Thostenson E., Ren Z., Chou T-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 2001. 61(13): 1899. https://doi.org/10.1016/S0266-3538(01)00094-X

12. Awasthi K., Srivastava A., Srivastava O. Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 2005. 5(10): 1616. https://doi.org/10.1166/jnn.2005.407

13. Krimm S. Infrared spectra of high polymers. Fortschritte Der Hochpolymeren-Forschung. 1960. 51. https://doi.org/10.1007/BFb0050351

14. Miyake A. Infrared spectra and crystal structures of polyamides. J. Polymer Sci. 1960. 44(143): 223. https://doi.org/10.1002/pol.1960.1204414319

15. Onyshchenko V., Karachevtseva L. Conductivity and photo-induced conductivity of two-dimensional macroporous silicon structures. Ukr. J. Phys. 2013. 58(9): 846. https://doi.org/10.15407/ujpe58.09.0846

16. Resanova N., Kartel M., Sementsov Yu., Prikhod'ko G., Melnik I., Tsebrenko M. Rheological properties of molten mixtures of polypropylene/copolyamide/carbon nanotubes. Him. Fiz. Tehnol. Poverhni. 2011. 2(4): 451.




DOI: https://doi.org/10.15407/hftp10.03.219

Copyright (©) 2019 M. Kartel, L. Karachevtseva, W. Bo, Yu. Sementsov, V. Trachevskyi, O. Bakalinska, O. Lytvynenko, V. Onyshchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.