Chemistry, Physics and Technology of Surface, 2020, 11 (1), 25-37.

Influence of the chemical nature of grafted β-cyclodextrins functional groups on the silica gels sorption specificity



DOI: https://doi.org/10.15407/hftp11.01.025

L. A. Belyakova

Abstract


The aim of this work is to study the influence of the chemical nature of grafted β-cyclodextrins side functional groups on chemically modified silica gels sorption affinity for cadmium, lead, and copper cations as the most typical water pollutants. Two organo-inorganic sorbents that differ only in the chemical nature of side functional groups of grafted β-cyclodextrin molecules wide edge were synthesized by chemical immobilization of mono-(6-O-(toluenesulfonyl))-β-cyclodextrins on the granular mesoporous silica gel surface. The obtained functionalized silica gels were characterized by IR and UV spectroscopy, chemical, elemental and derivatographic analysis, pH-metry, low-temperature nitrogen adsorption-desorption as well as sorption measurements. The results of studying the sorption of cadmium, lead, and copper cations from nitrate buffer solutions with pH = 2.0 were analyzed using the Lagergren kinetic model for pseudo-first and pseudo-second order processes, and the equilibrium sorption results were analyzed using the Langmuir and Freindlich models for homogeneous and heterogeneous surfaces. It has been found that only β-cyclodextrin-containing surface centers of chemically modified silica gels participate in the sorption of metal cations. The simultaneous formation of inclusion complexes of grafted β-cyclodextrin molecules with nitrate anions of the solution and mixed complexes of metal cations with side functional groups of the wide edge of immobilized cyclic oligosaccharides occurs during the interaction of synthesized silica gels with buffer solutions of cadmium, lead and copper nitrates. The sorption affinity of β-cyclodextrin-containing silica gel with secondary alcohol groups in the structure increases in the order Cd2+ < Pb2+ < Cu2+. The cation sorption sequence is opposite – Cu2+ < Pb2+ < Cd2+ – for β-cyclodextrin-containing silica gel with side thiosemicarbazidoethyl groups. The change in the sorption specificity of functionalized silica gels to metal cations is interpreted from the standpoint of the theory of “soft” and “hard” acids and bases. The formation of “β-cyclodextrin ‒ nitrate-anion” inclusion complexes with a composition of 1:1 on the surface of chemically modified silica gels promotes metal cations sorption. The results obtained make it possible to predict the sorption specificity of β-cyclodextrin-containing silica materials and its directed change using various functional derivatives of β-cyclodextrin.


Keywords


silica gel; β-cyclodextrin; surface; chemical modification; metal nitrates; sorption; “host ‒ guest” inclusion complexes

Full Text:

PDF (Русский)

References


1. Steed J.W., Atwood J.L. Supramolecular Chemistry. (Chichester-New York-Weinheim-Brisbano-Singapore-Toronto: John Wiley & Sons, 2000).

2. Lehn J.-M. Supramolecular Chemistry. Concepts and Perspectives. (Weinheim-New York-Basel-Cambridge-Tokyo: VCH Verlagsgesellschaf, 1995).

3. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998. 98(5): 1743. https://doi.org/10.1021/cr970022c

4. Dodziuk H. Cyclodextrins and Their Complexes. (Weinheim: Wiley-VCH GmbH&Co, 2006). https://doi.org/10.1002/3527608982

5. Bilensoy E. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine. (Hoboken: Wiley, 2001).

6. Bibby A., Mercier L. Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica. Green Chem. 2003. 5(1): 15. https://doi.org/10.1039/b209251b

7. Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005. 30(1): 38. https://doi.org/10.1016/j.progpolymsci.2004.11.002

8. Degoutin S., Bacquet M. Novel porous organosilica containing amino and beta-cyclodextrin groups. J. Porous Mater. 2013. 20(4): 663. https://doi.org/10.1007/s10934-012-9640-8

9. Ebadi A., Rafati A.A. Preparation of silica mesoporous nanoparticles functionalized with beta-cyclodextrin and its application for methylene blue removal. J. Mol. Liq. 2015. 209: 239. https://doi.org/10.1016/j.molliq.2015.06.009

10. Han Y.Q., Zhou W.J., Shen H.M., Liu Q.P., Yu W.Y., Ji H.B., She Y.B. Progress in the immobilization of beta-cyclodextrin and their application in adsorption of environmental pollutants. Chin. J. Org. Chem. 2016. 36(2): 248. https://doi.org/10.6023/cjoc201508002

11. Iler R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. (New York-Chichester-Brisbano-Toronto: Wiley-Interscience Publication, 1979).

12. Tertykh V.A., Belyakova L.A. Chemical Reactions Involving Silica Surface. (Kyiv: Naukova Dumka, 1991). [in Russian].

13. Vansant E.F., Van der Voort P., Vrancken K.C. Characterization and Chemical Modification of the Silica Surface. (Amsterdam: Elsevier, 1995). https://doi.org/10.1016/S0167-2991(06)81508-9

14. Roik N.V., Belyakova L.A. Interaction of supramolecular centers of silica surface with aromatic amino acids. J. Colloid Interface Sci. 2011. 362(1): 172. https://doi.org/10.1016/j.jcis.2011.05.085

15. Matias T., Marques J., Quina M.J., Gando-Ferreira L., Valente A.J.M., Portugal A., Duraes L. Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids Surf. A. 2015. 480: 260. https://doi.org/10.1016/j.colsurfa.2015.01.074

16. Mauri-Aucejo A.R., Ponce-Catala P., Belenguer-Sapina C., Amoros P. Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samples. Talanta. 2015. 134: 560. https://doi.org/10.1016/j.talanta.2014.11.057

17. Mauri-Aucejo A., Amoros P., Moragues A., Guillem C., Belenguer-Sapina C. Comparison of the solid-phase extraction efficiency of a bonded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples. Talanta. 2016. 156: 95. https://doi.org/10.1016/j.talanta.2016.05.011

18. Trofymchuk I.M., Roik N.V., Belyakova L.A. β-Cyclodextrin-MCM-41 silica as promising adsorbent for the trace amounts removal of aromatics from water. Him. Fiz. Tehnol. Poverhni. 2016. 7(4): 421. https://doi.org/10.15407/hftp07.04.421

19. Trofymchuk I.M., Roik N.V., Belyakova L.A. Structural variety and adsorptive properties of mesoporous silicas with immobilized oligosaccharide groups. Nanoscale Research Letters. 2017. 12(1): 307. https://doi.org/10.1186/s11671-017-2072-2

20. Belyakova L., Kazdobin K., Belyakov V., Ryabov S., Danil de Namor A.F. Synthesis and properties of supramolecular systems based on silica. J. Colloid Interface Sci. 2005. 283(2): 488. https://doi.org/10.1016/j.jcis.2004.09.012

21. Belyakova L.A., Shvets O.M., Lyashenko D.Yu. Formation of the nanostructure on a silica surface as mercury(II) ions adsorption sites. Inorganica Chimica Acta. 2009. 362(7): 2222. https://doi.org/10.1016/j.ica.2008.10.004

22. Belyakova L.A., Lyashenko D.Yu. Nanoporous functional organosilicas for sorption of toxic ions. Russ. J. Phys. Chem. 2014. 88(3): 489. https://doi.org/10.1134/S0036024414030030

23. Dinker M.K., Kulkarni P.S. Recent advances in silica-based materials for the removal of hexavalent chromium. J. Chem. Eng. Data. 2015. 60(9): 2521. https://doi.org/10.1021/acs.jced.5b00292

24. Shvets O.M., Belyakova L.A. Synthesis, characterization and sorption properties of silica modified with some derivatives of β-cyclodextrin. J. Hazard. Mater. 2015. 283: 643. https://doi.org/10.1016/j.jhazmat.2014.10.012

25. Liu H.J., Jing P.F., Liu X.Y., Du K.J., Sun Y.K. Synthesis of beta-cyclodextrin functionalized silica gel and its application for adsorption of uranium(VI). J. Radioanal. Nucl. Chem. 2016. 310(1): 263. https://doi.org/10.1007/s10967-016-4792-7

26. Belyakova L.A., Belyakov V.N., Vasilyuk S.L., Shvets O.M. The influence of grafted β-cyclodextrin on the sorption activity of silica gel to toxic metal ions. Reports of NAS of Ukraine. 2016. 3: 69. https://doi.org/10.15407/dopovidi2016.03.069

27. Gupta S.S., Bhattacharyya K.G. Adsorption of Ni(II) on clays. J. Colloid Interface Sci. 2006. 295 (1): 21. https://doi.org/10.1016/j.jcis.2005.07.073

28. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918. 40(9): 1361. https://doi.org/10.1021/ja02242a004

29. Freundlich H., Heller W.J. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc. 1939. 61(8): 2228. https://doi.org/10.1021/ja01877a071

30. Smith A.L. Applied Infrared Spectroscopy. (New York: John Wiley & Sons, 1982).

31. Belyakov V.N., Belyakova L.A., Varvarin A.M., Khora O.V., Vasilyuk S.L., Kazdobin K.A., Maltseva T.V., Kotvitskyy A.G., Danil de Namor A.F. Supramolecular structures onto silica surface and their adsorption properties. J. Colloid Interface Sci. 2005. 285(1): 18. https://doi.org/10.1016/j.jcis.2004.11.027

32. Person R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963. 85: 3533. https://doi.org/10.1021/ja00905a001




DOI: https://doi.org/10.15407/hftp11.01.025

Copyright (©) 2020 L. A. Belyakova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.