Chemistry, Physics and Technology of Surface, 2020, 11 (1), 72-99.

Polymeric Langmuir–Blodgett films functionalized by pH-sensitive dyes



DOI: https://doi.org/10.15407/hftp11.01.072

N. O. Mchedlov-Petrossyan, O. N. Bezkrovnaya, N. A. Vodolazkaya

Abstract


This paper summarizes the cycle of authors’ studies devoted to polyamic acid-based Langmuir–Blodgett (LBF) functionalized by organic dyes. Previously reported results are supplemented with new experimental data. The monolayers of the polyamic acid under study, poly(4, 4'-diphenyl oxide)-2-carboxyisophthalamide, on water surface, which contains 110–5 М Pb2+, at pH 5.8–6.0 the limiting area per repeating unit is Sm = (0.52±0.02) nm2. The character of the compressing isotherms depends on the pH of the subphase because of the presence of the carboxylic group in the polymer unit. The monolayers and corresponding LBF obtained by the Schaefer method on solid support were modified via n-octadecyl alcohol, N-n-octadecylpyridinium bromide, and acid-base indicators and luminophores. For this purpose, n-decyl esters of fluorescein and eosin, rose Bengal B, n-heptadecyl ester of rhodamine B, N,N'-di-n-octadecylrhodamine, bromothymol blue, quinaldine red, and duplex quinaldine red are used. As a rule, the LBF contained 30–60 monolayers and 2 to 23 molar percent of dyes. The character of the emission and absorption spectra of rhodamine and hydroxyxanthene compounds in the mixed LBF as well as in multilayers of   N-n-octadecylpyridinium bromide and stearic acid indicates the weakening of the dye dimerization and further aggregation of these dyes by the matrix.

The procedure of determination of the apparent ionization constants of the dyes, pKaapp, consisted in immersing of the LBF during 1–5 min into the aqueous solutions with different pH, air drying during several min, and measuring the absorption spectra. Experiments are performed as a rule at ionic strength of the subphase 0.05 М maintained by NaCl additives and 20 °С.

Analysis of thus obtained pKaapp (≡ – lgKaapp) values allows concluding that they are in outline close to the corresponding values obtained in micellar solutions of surfactants. These pKaapp values may be divided into three groups. In the LBF consisting of entire N-n-octadecylpyridinium bromide, without polyamic acid, the pKaapp values are generally close to those obtained for the same indicators in micelles of cationic surfactants and in droplets of cationic N-cetylpyridinium chloride-based microemulsions. An expressed differentiating action of this kind of BLF pseudophase is observed. The value of the electrostatic potential in the indicator locus is estimated as + 107 mV. The second group is represented by the pKaapp values of indicators in polyamic acid-based LBF modified either by    N-n-octadecylpyridinium bromide or n-octadecyl alcohol in the acidic region of pH. Under these conditions, the COOH groups of the polyamic acid are non-ionized, and the pKaapp values are also close to those in cationic surfactant micelles. Finally, the third group of pKaapp values corresponds to the pH region of 4–10. Here, the ionization of carboxylic groups of polyamic acid takes place. As a result, the transition range of indicators is anomalously expanded. It is these indicator equilibria that can be used in pH-sensor devices. The obtained results are compared with those reported by other authors. In addition, the peculiarity of dissociation of four-charged and triple-charged cations of the duplex quinaldine red is considered and compared with the dissociation of double-charged quinaldine red. 


Keywords


polyamic acid; Langmuir–Blodgett films; organic dyes; fluorescence; pH-sensitive indicator films; apparent ionization constants; electrostatic potential

Full Text:

PDF (Русский)

References


1. Colozza N., Stefanelli M., Venanzi M., Paolesse R., Monti D. Fabrication of Langmuir-Blodgett chiral films from cationic (L)-proline-porphyrin derivatives. J. Porphyrins Phthalocyanines. 2019. 23(4-5): 462. https://doi.org/10.1142/S1088424619500305

2. Kaur H., Yadav S., Srivastava A.K., Singh N., Schneider J.J., Sinha O.P., Agrawal V.V., Srivastava R. Large area fabrication of semiconducting phosphorene by Langmuir-Blodgett assembly. Sci. Rep. 2016. 6: 34095. https://doi.org/10.1038/srep34095

3. Valyanskiy S.I. Danko M.I. The study of the vibrational spectra of the Langmuir films of bacteriorhodopsin using surface-enhanced Raman scattering created using surface plasmon resonance. In: European Research. Penza: MTsNS, Nauka i Prosveshcheniye. 2019. P. 13. [in Russian].

4. Ibrayev N.Kh., Seliverstova E.V, Tenchurina A.R., Ishchenko A.A., Shargaeva A.Yu. Structure and physicochemical properties of cation polymethine dyes in Langmuir-Blodgett films. Russ. J. Phys. Chem. A. 2013. 87(12): 2082. https://doi.org/10.1134/S0036024413120091

5. Alekseeva V.I., Ibraev N.Kh., Lukyanets E.A., Marinina L.E. Langmuir-Blodgett films on the basis of decyl esters of xanthane dyes. Russ. J. Phys. Chem. 1999. 73(12): 2004.

6. Arslanov V.V. Polymer monolayers and Langmuir-Blodgett films. The influence of the chemical structure of the polymer and of external conditions on the formation and properties of organised planar assemblies. Russ. Chem. Rev. 1994. 63(1): 1. https://doi.org/10.1070/RC1994v063n01ABEH000069

7. Uekita M., Awaji H., Murata M. Heat-stable aromatic polymer precursors as Langmuir-Blodgett film materials. Thin Solid Films. 1988. 160(1-2): 21. https://doi.org/10.1016/0040-6090(88)90043-0

8. Uekita M., Awaji H., Murata M., Mizunuma S. Application of polyimide Langmuir-Blodgett films to deep UV resists. Thin Solid Films. 1989. 180(1-2): 271. https://doi.org/10.1016/0040-6090(89)90083-7

9. Zaytsev S.Yu., Zaytseva V.V. Multifunctional Monomers: Synthesis and Polymerization. (Donetsk: NANU, Institut fiziko-organicheskoy khimii i uglekhimii, 2003). [in Russian].

10. Baker S., Seki A., Seto J. The preparation of high quality Y-type polyimide Langmuir-Blodgett films. Thin Solid Films. 1989. 180(1-2): 263. https://doi.org/10.1016/0040-6090(89)90082-5

11. Nishikata Y., Kakimoto M., Morikawa A., Imai Y. Preparation and characterization of poly(amide-imide) multilayer films. Thin Solid Films. 1988. 160(1-2): 15. https://doi.org/10.1016/0040-6090(88)90042-9

12. Suzuki M. Photosensitive polyimide Langmuir-Blodgett films derived from 4-(17-octadecenyl)pyridine and polyamic acid. Thin Solid Films. 1989. 180(1-2): 253. https://doi.org/10.1016/0040-6090(89)90081-3

13. Stroeve P., Srinivasan M.P., Higgins B.G. Langmuir-Blodgett multilayers of polymer-merocyanine-dye mixtures. Thin Solid Films. 1987. 146(2): 209. https://doi.org/10.1016/0040-6090(87)90223-9

14. Shtykov S.N., Klimov B.N., Smirnova T.D., Glukhovskoy E.G., Istrashkina E.V., Sumina E.G. Properties of Langmuir-Blodgett films based on methyl orange and polyamide acid. Russ. J. Phys. Chem. 1997. 71(7): 1157.

15. Shtykov S.N., Klimov B.N., Naumenko G.Yu., Melnikov G.V., Smirnova T.D., Glukhovskoy E.G., Rusanova T.Yu., Gorin D.A. Studying Langmuir-Blodgett films prepared from a polyamide salt and a rhodamine dye. Russ. J. Phys. Chem. 1999. 73(9): 1519.

16. Bezkrovnaya O.N., Mchedlov-Petrosyan N.O., Savvin Yu.N. The behavior of polyamido acid monolayers on a subphase containing lead ions at various pH values. Russ. J. Phys. Chem. 2003. 77(12): 2206.

17. Bakay E.S., Vodolazkaya N.A., Bezkrovnaya O.N., Mchedlov-Petrosyan N.O. The acid-base equilibria of bromothymol blue in Langmuir-Blodgett polymeric films of various composition. Kharkov University Bull. 669. Khimiya. 2005. 13(36): 184. [in Russian].

18. Bezkrovnaya O.N., Mchedlov-Petrossyan N.O., Vodolazkaya N.A., Savvin Yu.N., Tolmachev A.V. The influence of lead (II) ions introduced into the subphase on the stability of monolayers of polyamic acid. J. Braz. Chem. Soc. 2006. 17(4): 655. https://doi.org/10.1590/S0103-50532006000400005

19. Bezkrovnaya O.N., Mchedlov-Petrosyan N.O., Vodolazkaya N.A., Litvin P.M. Materials Based on Polymer Nanoscale Films as pH Sensor. Dopovidi NAN Ukrainy. 2008. 7: 130. [in Russian].

20. Bezkrovnaya O.N., Mchedlov-Petrosyan N.O., Vodolazkaya N.A., Alekseeva V.I., Savvina L.P., Yakubovskaya A.G. Polymeric Langmuir-Blodgett films containing xanthene dyes. Russ. J. Appl. Chem. 2008. 81(4): 696. https://doi.org/10.1134/S1070427208040253

21. Mchedlov-Petrossyan N.O., Vodolazkaya N.A., Bezkrovnaya O.N., Yakubovskaya A.G., Tolmachev A.V., Grigorovich A.V. Fluorescent Dye N,N'-dioctadecylrhodamine as a new interfacial acid-base indicator. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 2008. 69(4): 1125. https://doi.org/10.1016/j.saa.2007.06.011

22. Bezkrovnaya O.N. Ph.D (Chem.) Thesis. (Kharkov, 2008). [in Russian].

23. Vodolazkaya N.A. Doctoral (Chem.) Thesis. (Kharkov, 2011). [in Russian].

24. Vodolazkaya N.A., Mchedlov-Petrosyan N.O. Acid-base equilibria of indicator dyes in organized solutions. (Kharkov: KhNU im. V.N. Karazina, 2014). [in Russian].

25. Abramzona A.A.. Gayevogo G.M. Surfactants. Directory. (Leningrad: Khimiya, 1979). [in Russian].

26. Pallas N.R., Pethica B.A. Intermolecular forces in lipid monolayers. Two-dimensional virial coefficients for pentadecanoic acid from micromanometry on spread monolayers at the air/water interface. Phys. Chem. Chem. Phys. 2009. 11(25): 5028. https://doi.org/10.1039/b820460h

27. Chattoraj D.K., Halder E., Das K.P., Mitra A. Surface activity coefficients of spread monolayers of behenic acid salts at air-water interface. Adv. Colloid Interface Sci. 2006. 123-126: 151. https://doi.org/10.1016/j.cis.2006.05.002

28. Blinov L.M. Langmuir films. Physics-Uspekhi. 1989. 155(3): 443. [in Russian]. https://doi.org/10.3367/UFNr.0155.198807c.0443

29. Hussain S.A., Chalrabory S., Bhattacharjee D., Schoonheydt R.A. Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and Langmuir-Blodgett (LB) films. Spectrochim. Acta A. 2010. 75(2): 664. https://doi.org/10.1016/j.saa.2009.11.037

30. Mchedlov-Petrosyan N.O., Kholin Y.V. Aggregation of rhodamine B in water. Russ. J. Appl. Chem. 2004. 77(3): 414. https://doi.org/10.1023/B:RJAC.0000031281.69081.d0

31. Zaitsev S.Yu., Belov V.N., Mitronova G.Yu., Möbius D. Mixed monolayers of a rhodamine derivative. Mendeleev Commun. 2010. 20(4): 203. https://doi.org/10.1016/j.mencom.2010.06.006

32. Mchedlov-Petrosyan N.O., Rubtsov M.I., Lukatskaya L.L. Acid-base equilibrium of Bengal Rose B in micellar solutions of anionic surfactants. Russ. J. Gen. Chem. 2000. 70(8): 1177.

33. Mchedlov-Petrossyan N.O., Cheipesh T.A., Shekhovtsov S.V., Ushakova E.V., Roshal A.D., Omelchenko I.V. Aminofluoresceins vs fluorescein: ascertained new unusual features of tautomerism and dissociation of hydroxyxanthene dyes in solution. J. Phys. Chem. A. 2019. 123(41): 8845. https://doi.org/10.1021/acs.jpca.9b05810

34. Drummond C.J., Grieser F., Healy T.W. Acid-Base Equilibria in Aqueous Micellar Solutions. Part 2.-Sulphonephthalein Indicators. J. Chem. Soc., Faraday Trans. I. 1989. 85(3): 537. https://doi.org/10.1039/f19898500537

35. Ponomarev A.N., Yuzhakov V.I. Spectroscopic study of the concentration effects of dye solutions in polymer matrices. (Dep. VINITI N 616-V87. redkollegiya zhurnala prikladnoy spektroskopii, 1986). [in Russian].

36. Mchedlov-Petrossyan N.O., Cheipesh T.A., Shekhovtsov S.V., Redko A.N., Rybachenko V.I., Omelchenko I.V., Shishkin O.V. Ionization and tautomerism of methyl fluorescein and related dyes. Spectrochim. Acta A. 2015. 150: 151. https://doi.org/10.1016/j.saa.2015.05.037

37. Kamneva N.N., Kharchenko A.Yu., Bykova O.S., Sundenko A.V., Mchedlov-Petrossyan N.O. The influence of 1-butanol and electrolytic background on the properties of CTAB micelles as examined using a set of indicator dyes. J. Mol. Liq. 2014. 199: 376. https://doi.org/10.1016/j.molliq.2014.09.022

38. Mchedlov-Petrossyan N.O. Protolytic equilibrium in lyophilic nano-sized dispersions: Differentiating influence of the pseudophase and salt effects. Pure Appl. Chem. 2008. 80(7): 1459. https://doi.org/10.1351/pac200880071459

39. Mchedlov-Petrossyan N.O., Isaenko Yu.V., Salamanova N.V., Savvina L.P. Ionic equilibria of chromophoric reagents in microemulsions. J. Anal. Chem. 2003. 58(11): 1018. https://doi.org/10.1023/A:1027321019689

40. Mchedlov-Petrossyan N.O., Vodolazkaya N.A., Kamneva N.N. Acid-base equilibrium in aqueous micellar solutions of surfactants. In: Micelles: Structural Biochemistry, Formation and Functions and Usage. Chapter 1. (N.Y.: Nova Publishers, 2013). P. 1.

41. Petrov J.G., Möbius D. Fluorometric titration of 4-heptadecyl-7-hydroxycoumarin in neutral monolayers at the air/water interface. Langmuir. 1989. 5(2): 523. https://doi.org/10.1021/la00086a040

42. Petrov J.G., Möbius D. Determination of the electrostatic potential of positively charged monolayers at the air/water interface by means of fluorometric titration of 4-heptadecyl-7-hydroxycoumarin. Langmuir. 1990. 6(4): 746. https://doi.org/10.1021/la00094a005

43. Petrov J.G., Möbius D. Strong influence of the solid substrate on the acid-base equilibrium of 4-heptadecyl-7-hydroxycoumarin in monolayers at solid/liquid interfaces. Langmuir. 1991. 7(7): 1495. https://doi.org/10.1021/la00055a035

44. Petrov J.G., Möbius D. Dependence of pK of 4-Heptadecyl-7-hydroxycoumarin at a Neutral Multilayer/Water Interface on the Multilayer Thickness. Langmuir. 1993. 9(3) 756. https://doi.org/10.1021/la00027a024

45. Petrov J.G., Möbius D. Interfacial acid-base equilibrium and electrostatic potentials of model Langmuir-Blodgett membranes in contact with phosphate buffer. Colloids Surf. A. 2000. 171(1-3): 207. https://doi.org/10.1016/S0927-7757(99)00558-0

46. Janata J. Do optical sensors really measure pH? Anal. Chem. 1987. 59(9): 1351. https://doi.org/10.1021/ac00136a019

47. Mchedlov-Petrossyan N.O., Vodolazkaya N.A., Yakubovskaya A.G., Grigorovich A.V., Alekseeva V.I., Savvina L.P. A novel probe for determination of electrical surface potential of surfactant micelles: N,N'-di-n-octadecyl rhodamine. J. Phys. Org. Chem. 2007. 20(5): 332. https://doi.org/10.1002/poc.1150

48. Mchedlov-Petrossyan N.O., Vodolazkaya N.A., Bezkrovnaya O.N., Yakubovskaya A.G., Tolmachev A.V., Grigorovich A.V. Fluorescent dye N,N'-dioctadecyl rhodamine as a new interfacial acid-base indicator. Spectrochim. Acta, Part A. Spectrochimica Acta Part A. 2008. 69(4): 1125. https://doi.org/10.1016/j.saa.2007.06.011

49. Shtykov S.N., Rusanova T.Yu. Langmuir-Blodgett films as matrices of sensitive elements in optical acidity sensors. Doklady Physical Chemistry. 2003. 388(4-6): 60. https://doi.org/10.1023/A:1022595500288

50. Shtykov S.N., Rusanova T.Yu., Smirnova T.D., Gorin D.A. Sensing element of a benzopurpurin 4B-based optical sensor for determining the acidity of etch solutions. J. Anal. Chem. 2004. 59(2): 175. https://doi.org/10.1023/B:JANC.0000014747.67934.b5

51. Shtykov S.N., Klimov B.N., Gorin D.A., Pankin K.E. Ellipsometric study of polyamide and polyimide Langmuir - Blodgett films. Russ. J. Phys. Chem. 2004. 78(3): 416.

52. Takahashi M., Kobayashi K., Takaoka K., Tajima K. Adsorption behavior of methyl orange and Langmuir-Blodgett films of octadecylamine. Bull. Chem. Soc. Jpn. 1998. 71(6): 1467. https://doi.org/10.1246/bcsj.71.1467

53. Malins C., Butler T.M., Maccraith B.D. Influence of the surface polarity of dye-doped sol-gel glass films on optical ammonia sensor response. Thin Solid Films. 2000. 368(1): 105. https://doi.org/10.1016/S0040-6090(00)00913-5

54. Bacci M., Baldini F., Scheggi A.M. Spectrophotometric investigations on immobilized acid-base indicators. Anal. Chim. Acta. 1988. 207: 343. https://doi.org/10.1016/S0003-2670(00)80812-0

55. Funasaki N. The Dissociation constants of acid-base indicators on the micellar suface of dodecyldimethylamine oxide. J. Colloid Interface Sci. 1977. 60(1): 54. https://doi.org/10.1016/S0021-9797(77)80003-9

56. Lobnik A., Oehme I., Murkovic I., Wolfbeis O.S. pH optical sensors based on sol-gels: Chemical doping versus covalent immobilization. Anal. Chim. Acta. 1998. 367(1-3): 159. https://doi.org/10.1016/S0003-2670(97)00708-3

57. Weidgans B.M., Krause C., Klimant I., Wolfbeis O.S. Fluorescent pH sensors with negligible sensitivity to ionic strength. Analyst. 2004. 129(7): 645. https://doi.org/10.1039/b404098h

58. Schröder C.R., Weidgans B.M., Klimant I. pH Fluorosensors for Use in Marine Systems. Analyst. 2005. 130(6): 907. https://doi.org/10.1039/b501306b

59. Nikitina N.A., Reshetnyak E.A., Svetlova N.V., Mchedlov-Petrossyan N.O. Protolytic properties of dyes embedded in gelatin films. J. Braz. Chem. Soc. 2011. 22(5): 855. https://doi.org/10.1590/S0103-50532011000500007

60. Mchedlov-Petrosyan N.O. Polyprotic acids in solution: is the inversion of the constants of stepwise dissociation possible? Ukr. Chem. J. 2019. 85(5): 3. [in Russian]. https://doi.org/10.33609/0041-6045.85.5.2019.3-45




DOI: https://doi.org/10.15407/hftp11.01.072

Copyright (©) 2020 N. O. Mchedlov-Petrossyan, O. N. Bezkrovnaya, N. A. Vodolazkaya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.