Chemistry, Physics and Technology of Surface, 2020, 11 (1), 100-114.

Constructive role of chaos: Brownian motors and winning strategies in game theory



DOI: https://doi.org/10.15407/hftp11.01.100

V. M. Rozenbaum

Abstract


In spite of the widespread opinion about the negative effect of chaos on the nature and human life, there exist examples of its constructive role in various processes. Among them, a prominent position is occupied by the processes in which thermal noise causes not only Brownian motion but also drift of nanoparticles as a result of unbiased non-equilibrium perturbations of various nature in systems with broken spatial and/or temporal symmetry. Such processes are relevant to the operation of Brownian motors, or ratchets, actively studied in the past decades. In the present paper, the working principles of systems of this kind are explained based on the author’s approach which unifies the treatment of different ratchet effect manifestations in the models of fluctuating potential, catalytic wheel, and electroconformational coupling. Another manifestation of this effect is provided by the paradoxical games proposed by Parrondo in which chaos appears in random tosses of a die and the ratchet effect arises from a certain alternation of game strategies ensuring an average win. The paper presents the simplest version of Parrondo’s game; it consists in the alternation of two antisymmetric games, with the rules depending on the parity of the capital possessed by the player before the next toss. The dependence of the average win on the number of tosses is calculated by computer simulation and compared with the result of the catalytic wheel model valid in the adiabatic approximation. The theoretical win calculated by this model agrees well with the numerical simulation result for the game concerned. The attractiveness of the treatment of the ratchet effect in terms of game theory stems from the possibility to visualize the theoretical framework and to study the laws of Brownian motor operation by simple modelling methods.


Keywords


Brownian motors; ratchet effect; game theory; constructive role of chaos

Full Text:

PDF (Русский)

References


1. Barantsev R.G. Synergetics in modern science. Series "Synergetics: from the past to the future". N 11. (Moscow: Editorial, USSS, 2003). [in Russian].

2. Tasalov V.I. Chaos and order: social and artistic dialectics. (Moscow: Znanie, 1990). [in Russian].

3. Valéry P. On Art. (Moscow: Iskusstvo, 1993). [in Russian].

4. Haken G. Synergetics. Hierarchies of instabilities in self-organizing systems and devices. (Moscow: Mir, 1985). [in Russian].

5. Knyazeva Ye.N., Kurdyumov S.P. Fundamentals of synergetics: modes with escalation, self-organization, tempoworlds. (SPb.: Aleteyya, 2002). [in Russian].

6. Plaza y Font, Joan Pere, Dandoy Régis. Chaos Theory and its Application in Political Science. IPSA - AISP World Congress (Fukuoka, Japan, 9- 3 July, 2006), http://hdl.handle.net/2078.1/176425

7. Kotelnikov G.A. Theoretical and applied synergetics. (Belgorod: BelGTASM, 2000). [in Russian].

8. Keynes J.M. General Theory of Employment, Interest, and Money. (London: Macmillan, for the Royal Economic Society, 1973).

9. Mann S.R. Chaos Theory and Strategic Thought. Parameters:US Army War College. 1992. XXII: 54. https://doi.org/10.21236/ADA437356

10. Cilla S., Floria L.M. Mirror symmetry breaking through an internal degree of freedom leading to directional motion. Phys. Rev. E. 2001. 63: 031110. https://doi.org/10.1103/PhysRevE.63.031110

11. Reimann P. Brownian Motors: Noisy Transport far from Equilibrium. Phys. Rep. 2002. 361(2-4): 57. https://doi.org/10.1016/S0370-1573(01)00081-3

12. Hänggi P., Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009. 81(1): 387. https://doi.org/10.1103/RevModPhys.81.387

13. Cubero D., Renzoni F. Brownian Ratchets: From Statistical Physics to Bio and Nanomotors. (Cambridge, UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781107478206

14. Rozenbaum V.M., Shapochkina I.V., Trakhtenberg L.I. Green's function method in the theory of Brownian motors. Physics-Uspekhi. 2019. 62(5): 496. https://doi.org/10.3367/UFNe.2018.04.038347

15. Rozenbaum V.M., Yang D.-Y., Lin S.H., Tsong T.Y. Catalytic Wheel as a Brownian Motor. J. Phys. Chem. B. 2004. 108(40): 15880. https://doi.org/10.1021/jp048200a

16. Tsong T.Y., Chang C.-H. Catalytic Wheel, Brownian Motor, and Biological Energy Transduction. AAPPS Bulletin. 2003. 13(2): 12.

17. Tsong T.Y., Astumian R.D. Absorption and conversion of electric field energy by membrane bound ATPases. Bioelectrochem. Bioenerg. 1986. 15(3): 457. https://doi.org/10.1016/0302-4598(86)85034-6

18. Astumian R.D. Adiabatic Theory for Fluctuation-Induced Transport on a Periodic Potential. J. Phys. Chem. 1996. 100(49): 19075. https://doi.org/10.1021/jp961614m

19. Harmer G.P., Abbott D. Losing strategies can win by Parrondo's paradox. Nature. 1999. 402: 864. https://doi.org/10.1038/47220

20. Harmer G.P., Abbott D. Parrondo's parado. Stat. Sci. 1999. 14(9): 206. https://doi.org/10.1214/ss/1009212247

21. Parrondo J.M.R., Harmer G.P., Abbott D. New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 2000. 85(4): 5226. https://doi.org/10.1103/PhysRevLett.85.5226

22. Toral R. Cooperative Parrondo's games. Fluctuation and Noise Letters. 2001. 1(1): L7. https://doi.org/10.1142/S021947750100007X

23. Allison A., Abbott D. The physical basis for Parrondo's games. Fluctuation and Noise Letters. 2002. 2(4): L327. https://doi.org/10.1142/S0219477502001007

24. Toral R., Amengual P., Mangioni S. Parrondo's games as a discrete ratchet. Physica A. 2003. 327(1-2): 105. https://doi.org/10.1016/S0378-4371(03)00459-X

25. Parrondo J.M.R., Dinís L. Brownian motion and gambling: from ratchets to paradoxical games. Contemp. Phys. 2004. 45(2): 147. https://doi.org/10.1080/00107510310001644836

26. Skou J.C. The Identification of the Sodium-Potassium Pump (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1998. 37(17): 2321. https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2320::AID-ANIE2320>3.0.CO;2-2

27. Tsong T.Y., Xie T.D. Ion pump as molecular ratchet and effects of noise: electric activation of cation pumping by Na,K-ATPase. Appl. Phys. A. 2002. 75(2): 345. https://doi.org/10.1007/s003390201407

28. Wuddel I., Apell H.-J. Electrogenicity of the sodium transport pathway in the Na,K-ATPase probed by charge-pulse experiments. Biophys. J. 1995. 69(3): 909. https://doi.org/10.1016/S0006-3495(95)79965-9

29. Rakowski R.F., Gadsby D. C., De Weer P. Voltage dependence of the Na/K pump. J. Membrane Biol. 1997. 155(2): 105. https://doi.org/10.1007/s002329900162

30. Hilgemann D. W. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science. 1994. 263(5152): 1429. https://doi.org/10.1126/science.8128223

31. Astumian R.D., Derenyi I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 1998. 27(5): 474. https://doi.org/10.1007/s002490050158

32. Liu D.S., Astumian R.D., Tsong T.Y. Activation of Na+ and K+ pumping mode of (Na,K)-ATPase by an oscillating electric field. J. Biol. Chem. 1990. 265(13): 2760.

33. Xie T.D., Marszalek P., Chen Y.-D., Tsong T.Y. Recognition and processing of randomly fluctuating electric signals by Na,KATPase. Biophys. J. 1994. 67(3): 1247. https://doi.org/10.1016/S0006-3495(94)80594-6

34. Korochkova T.E., Rosenbaum V.M. A molecular pump controlled by electric field fluctuations. Coll. Chemistry, physics and technology of surface. 2006. 11, 12: 29. [in Russian].

35. Leibler S., Huse D.A., Porters versus rovers: a unified stochastic model of motor proteins. J. Cell Biol. 1993. 121(6): 1357. https://doi.org/10.1083/jcb.121.6.1357

36. Gilbert S.P., Webb M.R., Brune M., Johnson K.A. Pathway of processive ATP hydrolysis by kinesin. Nature. 1995. 373: 671. https://doi.org/10.1038/373671a0

37. Hunt A.J., Gittes F., Howard J. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 1994. 67(2): 766. https://doi.org/10.1016/S0006-3495(94)80537-5

38. Svoboda K., Block S.M. Force and velocity measured for single kinesin molecules. Cell. 1994. 77(5): 773. https://doi.org/10.1016/0092-8674(94)90060-4

39. Rozenbaum V.M., Chernova A.A. Near-surface Brownian motor with synchronously fluctuating symmetric potential and applied force. Surf. Sci. 2009. 603(22): 3297. https://doi.org/10.1016/j.susc.2009.09.019

40. Rozenbaum V.M. Brownian motors in the low-energy approximation: classification and properties. J. Exp. Theor. Phys. 2010. 110(4): 653. https://doi.org/10.1134/S1063776110040126

41. Rozenbaum V.M., Makhnovskii Yu.A., Sheu S.-Y., Yang D.-Y., Lin S.H. Two-state Brownian motor driven by synchronously fluctuating unbiased forces. Phys. Rev. E. 2011. 84(2): 021104. https://doi.org/10.1103/PhysRevE.84.021104

42. Zwangig R. Diffusion past an entropy barrier. J. Phys. Chem. 1992. 96(10): 3926. https://doi.org/10.1021/j100189a004

43. Zitserman V.Yu., Makhnovsky Yu.A., Trakhtenberg L.I., Young D.E., Lin Sh.K. Drift of particles caused by fluctuations of their sizes. JETP Lett. 2017. 105(5): 335. https://doi.org/10.1134/S0021364017050149

44. Makhnovskii Yu.A., Sheu S.-Y., Yang D.-Y., Lin S.H. Directed motion from particle size oscillations inside an asymmetric channel. J. Chem. Phys. 2017. 146: 154103. https://doi.org/10.1063/1.4979984

45. Reimann P., Grifoni M., Hänggi P. Quantum Ratchets. Phys. Rev. Lett. 1997. 79(1): 10. https://doi.org/10.1103/PhysRevLett.79.10

46. Linke H., Humphrey T.E., Lofgren A., Sushkov A.0., Newbury R., Taylor R.P., Omling P. Experimental Tunneling Ratchets. Science. 1999. 286(5448): 2314. https://doi.org/10.1126/science.286.5448.2314

47. Lau B., Kedem O., Schwabacher J., Kwasnieski D., Weiss E.A. An introduction to ratchets in chemistry and biology. Mater. Horiz. 2017. 4(3): 310. https://doi.org/10.1039/C7MH00062F

48. Parrondo J.M.R. Reversible ratchets as Brownian particles in an adiabatically changing periodic potential. Phys. Rev. E. 1998. 57(6): 7297. https://doi.org/10.1103/PhysRevE.57.7297

49. Lau B., Kedem O., Ratner M.A., Weiss E.A. Identification of two mechanisms for current production in a biharmonic flashing electron ratchet. Phys. Rev. E. 2016. 93(6): 062128. https://doi.org/10.1103/PhysRevE.93.062128




DOI: https://doi.org/10.15407/hftp11.01.100

Copyright (©) 2020 V. M. Rozenbaum

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.