Coherent oscillations in IR spectra of 2d macroporous silicon structures with surface nanocoatings
DOI: https://doi.org/10.15407/hftp11.01.115
Abstract
One of the promising materials for the development of 2D photonic structures is macroporous silicon obtained using photoanodic etching. Presence of periodically located cylindrical pores divided by silicon columns provides large effective surface of samples and enhanced optical and photo-physical characteristics of macroporous silicon structures. In this paper, the near-IR light absorption oscillations of 2D macroporous silicon structures with microporous silicon layers, SiO2 nanocoatings and CdTe, ZnO surface nanocrystals are studded taking into account the Wannier–Stark electro-optical effect. An analysis of the experimental absorption spectra was carried out within the model of the resonant electron scattering with infinite amplitude on impurity states in strong electric field, with difference between two resonant energies equaled to the step of Wannier–Stark ladder. The constant oscillation period specifies the realization of Wannier–Stark effect on the randomly distributed surface bonds on silicon-nanocoating interface. We compared the IR absorption oscillations in 2D macroporous silicon with surface nanocoatings, analyzed shifts and deviations of oscillation peaks. The coherence of the IR spectra oscillations increases with the decrease of surface state concentration and with the optimal area of contact of nanocrystals to the macropore surface. Thus, the shift of oscillations for ZnO nanoparticles with optimal size of nanocrystals (3.7–4.4 nm) leads to deviations of the oscillation peaks within 0.26–0.42 meV, the oscillation coherence reaches 0.25–0.4 %. The small broadening parameter of the Wannier–Stark ladder levels G = 0.3¸0.8 cm–1 equals to that for surface phonon polaritons measured in thin films of II-VI semiconductors. Controllability and coherence of the investigated system are determined by forming of coherent Wannier levels in a narrow triangular potential well formed by an electric field at the silicon-nanocoating interface. In addition, we have proposed a high coherent optical quantum computer based on the quantum Wannier-Stark electro-optical effect on a silicon matrix with macropores and a layer of nanocrystals on the macropore surface.
Keywords
References
1. Birner A., Wehrspohn R.B., Gösele U.M., Busch K. Silicon‐Based Photonic Crystals. Adv. Mater. 2001. 13(6): 377. https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X
2. Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2004. 7(4): 430. https://doi.org/10.15407/spqeo7.04.430
3. Karachevtseva L.A., Glushko A.E., Ivanov V.I., Lytvynenko O.O., Onishchenko V.F., Parshin K.A., Stronska O.J. Out-of-plane optical transmittance of 2D photonic macroporous silicon structures. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2007. 10(2): 51. https://doi.org/10.15407/spqeo10.02.051
4. Glushko A., Karachevtseva L. Photonic band structure of oxidized macroporous silicon. Opto-Electron. Rev. 2006. 14(3): 201. https://doi.org/10.2478/s11772-006-0026-9
5. Glushko A., Karachevtseva L. PBG properties of three-component 2D photonic crystals. Photonics Nanostruct. Fundam. Appl. 2006. 4(3): 141. https://doi.org/10.1016/j.photonics.2006.02.003
6. Karachevtseva L., Karas N., Onischenko V., Sizov F. Surface polaritons in 2D macroporous silicon structures. Int. J. Nanotechnol. 2006. 3(1): 76. https://doi.org/10.1504/IJNT.2006.008722
7. Holiney R.Yu., Matveeva L.A., Venger E.F., Karachevtseva L.A., Lytvynenko O.A. Electroreflectance study of macroporous silicon surfaces. Appl. Surf. Sci. 2001. 172(3-4): 214. https://doi.org/10.1016/S0169-4332(00)00861-8
8. Karachevtseva L.A., Ivanov V.I., Lytvynenko O.O., Parshin K.A., Stronska O.J. The impurity Franz-Keldysh effect in 2D photonic macroporous silicon structures. Appl. Surf. Sci. 2008. 255(5): 3328. https://doi.org/10.1016/j.apsusc.2008.09.038
9. Karachevtseva L., Kuchmii S., Lytvynenko O., Sizov F., Stronska O., Stroyuk A. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Appl. Surf. Sci. 2011. 257(8): 3331. https://doi.org/10.1016/j.apsusc.2010.11.016
10. Karachevtseva L., Goltviansky Yu., Sapelnikova O., Lytvynenko O., Stronska O., Bo Wang, Kartel M. Wannier-Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO2 coatings. Appl. Surf. Sci. 2016. 388(1): 120. https://doi.org/10.1016/j.apsusc.2016.03.026
11. Karachevtseva L.A., Litvinenko O.A., Stronskaya E.I. Influence of Electrochemical Parameters on the Etching of Macropores in Silicon. Theor. Exp. Chem. 2003. 39(6): 385. https://doi.org/10.1023/B:THEC.0000013993.88442.0e
12. Lopez-Otero A. Hot wall epitaxy. Thin Solid Films. 1978. 49(1): 3. https://doi.org/10.1016/0040-6090(78)90309-7
13. Huber W., Lopez-Otero A. The electrical properties of CdTe films grown by hot wall epitaxy. Thin Solid Films. 1979. 58(1): 21. https://doi.org/10.1016/0040-6090(79)90201-3
14. Bilevych Ye., Soshnikov A., Darchuk L., Apatskaya M., Tsybrii Z., Vuychik M., Boka A., Sizov F., Boelling O., Sulkio-Cleff B. Influence of substrate materials on the properties of CdTe thin films grown by hot-wall epitaxy. J. Crystal Growth. 2005. 275(1-2): e1177. https://doi.org/10.1016/j.jcrysgro.2004.11.207
15. Stroyuk A.L., Shvalagin V.V., Kuchmii S.Ya. Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles. J. Photochem. Photobiol. A. 2005. 173(2): 185. https://doi.org/10.1016/j.jphotochem.2005.02.002
16. Mao J., Yao J.-N., Wang L.-N., Liu W.-S. Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier. J. Colloid Interface Sci. 2008. 319(1): 353. https://doi.org/10.1016/j.jcis.2007.10.027
17. Karachevtseva L., Kuchmii S., Stroyuk A., Sapelnikova O., Lytvynenko O., Stronska O., Bo Wang, Kartel M. Light-emitting structures of CdS nanocrystals in oxidized macroporous silicon. Appl. Surf. Sci. 2016. 388(1): 288. https://doi.org/10.1016/j.apsusc.2016.01.069
18. Berezhkovskii A.M., Ovchinnikov A.A. Scattering of electrons on an impurity in a crystal in a constant electric field. Theor. Math. Phys. 1979. 39: 466. https://doi.org/10.1007/BF01014926
19. Berezhkovskii A.M., Ovchinnikov A.A. Influence of impurities on the Wannier-Stark ladder in semiconductor in a strong electric field. Phys. Status Solidi B. 1982. 110(2): 455. https://doi.org/10.1002/pssb.2221100210
20. Karachevtseva L.A., Onyshchenko V.F., Sachenko A.V. Kinetics of photoconductivity in macroporous silicon structures. Ukr. J. Phys. 2008. 53(9): 874.
21. Karachevtseva L., Goltviansky Yu., Kolesnyk O., Lytvynenko O., Stronska O. Wannier-Stark effect and electron-phonon interaction in macroporous silicon structures with SiO2 nanocoatings. Opto-Electron. Rev. 2014. 22(4): 201. https://doi.org/10.2478/s11772-014-0199-6
22. Vinogradov E.A., Zhizhin G.N., Yakovlev V.A. Resonance between dipole oscillations of atoms and interference modes in crystalline films. Sov. Phys. JETP. 1979. 50: 486.
23. Shor P.W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. 1995. A52: 2493. https://doi.org/10.1103/PhysRevA.52.R2493
24. Sleator T., Weinfurter H. Realizable Universal Quantum Logic Gates. Phys. Rev. Lett. 1995. 74(20): 4087. https://doi.org/10.1103/PhysRevLett.74.4087
25. Bernien H., Schwartz S., Keesling A., Levine H., Omran A. Probing many-body dynamics on a 51-atom quantum simulator. Nature. 2017. 551: 579. https://doi.org/10.1038/nature24622
26. Van der Sar T., Wang Z.H., Blok M.S., Bernien H., Taminiau T.H., Toyli D.M., Lidar D.A., Awschalom D.D., Hanson R., Dobrovitski V.V. Decoherence protected quantum gates for a hybrid solid-state spin register. Nature. 2012. 484: 82. https://doi.org/10.1038/nature10900
27. Patent UA 136455. Karachevtseva L. Method for Manufacturing of Optical Quantum Computer, Utility Model. 2019.
DOI: https://doi.org/10.15407/hftp11.01.115
Copyright (©) 2020 L. A. Karachevtseva
This work is licensed under a Creative Commons Attribution 4.0 International License.