Chemistry, Physics and Technology of Surface, 2020, 11 (3), 291-303.

Thermal and mechanical properties of nonoxidized graphene – epoxy composites at low graphene loading



DOI: https://doi.org/10.15407/hftp11.03.291

N. V. Sigareva, B. M. Gorelov, O. V. Mistchanchuk, D. L. Starokadomsky

Abstract


Thermophysical and mechanical properties of epoxy resin compositions with nonoxidized graphene particles have been investigated. The particles were obtained using the electrochemical method and they had a block structure with a thickness of about 50 nm. The particle concentrations in the composites were C = 1.0, 2.0 and 5.0 % for thermophysical studies and 0.1, 0.2, 0.5 and 1.0 % for mechanical measurements.

Thermophysical measurements of the composite destruction were performed by method of thermo-programmable desorption with mass spectrometric recording of volatile products in the temperature range 40-800 оС. The main effect of the introduction of unoxidized graphene particles is a sharp increase in the thermal stability of the composite and a decrease in the amount of the released volatile products Qi in the low graphene loading at C ≤ 1 %. With increasing loading, the value of Qi nonmonotonously reduces with a maximum at C = 2.0 %.

Concentration dependences of the amount of the released volatile products and the activation energy of thermodestruction for volatile products were determined. The thermodesorption activation energy Ed for atomic fragments, which was determined from the Wigner-Polanyi equation, reduced. The Ed slightly and nonmonotonously increases with a maximum at C = 2 %. It has been shown that the run of the Ed (С) dependence correlates with the Qi (С) behavior.

Models describing growth of thermal stability and variations of mechanical parameters are proposed. Compressive strength and elastic modulus have been measured in the low concentration range at C ≤ 1 %. It has been found that the parameters nonmonotonously vary with maximum at C = 0.01 %. The absence of correlation between the behavior of mechanical parameters and the thermal stability of graphene composites is related with various reasons. Behavior of mechanical parameters is caused by variation in elastic and conformational deformations of polymer chains upon loading gaphene filler in the polymer. The growth in thermal stability may be attributed to partial removal of heat flux energy at the interface in the electronic subsystem of graphene particles with subsequent lowering vibrational energy of atoms  at the interface.


Keywords


epoxy composite; nonoxidized graphene; thermal stability; mechanical parameters

Full Text:

PDF

References


1. Kim H., Abdala A.A., Macosko C.W. Graphene/polymer nanocomposites. Macromolecules. 2010. 43: 6515. https://doi.org/10.1021/ma100572e

2. McNamara A.J., Joshi Y., Zhang Z.M. Characterization of nanostructured thermal interface materials - a review. Int. J. Therm. Sci. 2012. 62: 2. https://doi.org/10.1016/j.ijthermalsci.2011.10.014

3. Paszkiewicz S., Szymczyk A., Sui X.M., Wagner H.D., Linares A., Cirera A., Varea A., Ezquerra T.A., Rosłaniec Z. Electrical conductivity and transparency of polymer hybrid nanocomposites based on poly(trimethylene terephthalate) containing single walled carbon nanotubes and expanded graphite. J. Appl. Polym. Sci. 2017. 134(1): 44370. https://doi.org/10.1002/app.44370

4. Yapeng Chen, Jingyao Gao, Qingwei Yan, Xiao Hou, Shengcheng Shu, Mingliang Wu, Nan Jiang, Xinming Li, Jian-Bin Xu, Cheng-Te Lin, Jinhong Yu. Advances in graphene-based polymer composites with high thermal conductivity. Veruscript Funct. Nanomater. 2018. 2(11): OOSB06. https://doi.org/10.22261/OOSB06

5. Meng Wang, Xidong Duan, Yuxi Xu, Xiangfeng Duan Functional Three-Dimensional Graphene/Polymer Composites. ACS Nano. 2016. 10(8): 7231. https://doi.org/10.1021/acsnano.6b03349

6. Dhand V., Rhee K.Y., Kim H.J., Jung, D.H. A comprehensive review of graphene nanocomposites: research status and trends. J. Nanomater. 2013. 1: 2013. https://doi.org/10.1155/2013/763953

7. Potts J.R., Dreyer D.R., Bielawski C.W., Ruoff R.S. Graphene-based polymer nanocomposites. Polymer. 2011. 52(1): 5. https://doi.org/10.1016/j.polymer.2010.11.042

8. Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S. Graphene-based materials: Past, present and future. Prog. Mater. Sci. 2011. 56(8): 1178. https://doi.org/10.1016/j.pmatsci.2011.03.003

9. Chang K-Ch., Hsu M-Hs., H-I Lu., M-C.Lai., P-Ju Liu.,C-H.Hsu., W-F.Ji., T-Li Chuang., Y.Wei., J-M.Yeh., W-R. Liu. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon. 2014. 66: 144. https://doi.org/10.1016/j.carbon.2013.08.052

10. Wang Y., Zhan H.F., Xiang Y., Yang C., Wang C.M., Zhang Y.Y. Effect of covalent functionalization on thermal transport across graphene-polymer interfaces. J. Phys. Chem. 2015. 119(22): 12731. https://doi.org/10.1021/acs.jpcc.5b02920

11. Andres P.L., Ramírez R., Vergés J.A. Strong covalent bonding between two graphene layers. Phys. Rev. B. 2008. 77: 045403. https://doi.org/10.1103/PhysRevB.77.045403

12. Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008. 8(3): 902. https://doi.org/10.1021/nl0731872

13. Pop E., Mann D., Wang Q., Goodson K., Dai H. Thermal Conductance of an Individual Single- Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006. 6(1): 96. https://doi.org/10.1021/nl052145f

14. Faugeras C., Faugeras B., Orlita M., Potemski M., Nairs R.S., Geim A.K. Thermal Conductivity of Graphene in Corbino Membrane Geometry. ACS Nano. 2010. 4(4): 1889. https://doi.org/10.1021/nn9016229

15. An Li, Cong Zhang, Yang-Fei Zhang. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers. 2017. 9(9): 437. https://doi.org/10.3390/polym9090437

16. Atif R., Shyhai I., Mamad F. Mechanical, Thermal, and Electrical Properties of of Graphene Epoxy Nanocomposites-A Review. Polymers. 2016. 8(8): 281. https://doi.org/10.3390/polym8080281

17. Atif R., Shyha I., Inam F. Modeling and experimentation of multi-layered nanostructure graphene-epoxy nanocomposites for enhanced thermal and mechanical properties. J. Compos. Mater. 2016. 51(2): 209. https://doi.org/10.1177/0021998316640060

18. Young R.J, Kinloch I.A, Gong L., Novoselov K.S. The mechanics of graphene nanocomposites: A review. Compos. Sci. Technol. 2012. 72(12): 1459. https://doi.org/10.1016/j.compscitech.2012.05.005

19. Rafiee M.A., Rafiee J., Wang Z., Song H., Yu Z.Z., Koratkar N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. 2009. 3(12): 3884. https://doi.org/10.1021/nn9010472

20. Arun G.K., Sreenivas N., Kesari B.R., Sai Krishna Reddy K., M.E. Shashi Kumar, Pramod R. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP. IOP Conference Series: Materials Science and Engineering. 2018. 310(1): 012158. https://doi.org/10.1088/1757-899X/310/1/012158

21. Aradhana R., Mohanty S., Nayak S.K. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer. 2018. 141: 109. https://doi.org/10.1016/j.polymer.2018.03.005

22. Sung-Chiun Shiu, Jia-Lin Tsa. Characterizing thermal and mechanical properties of graphene epoxy nanocomposites. Composites. Part B. Engineering. 2014. 56(1): 691. https://doi.org/10.1016/j.compositesb.2013.09.007

23. Alshammari B.A., Al-Mubaddel F.S., Karim M.R., Hossain M., Al-Mutairi A.S., Wilkinson A.N. Addition of Graphite Filler to Enhance Electrical, Morphological, Thermal, and Mechanical Properties in Poly (Ethylene Terephthalate): Experimental Characterization and Material Modeling. Polymers. 2019. 11(9): 1411. https://doi.org/10.3390/polym11091411

24. Tang L.C., Wan Y.J., Yan D., Pei Y.B., Zhao L., Li Y.B., Wu L.B., Jiang J.X., Lai G.Q. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon. 2013. 60: 16. https://doi.org/10.1016/j.carbon.2013.03.050

25. Xin Liu, Xiao-Yu Shao, Le-Ying Wang, Hai-Feng He, Guan-Biao Fang. Thermal stability and mechanical properties of solution mixing-processed co-polyamide-graphene composites at extremely low graphene loading. High Performance Polymers. 2018. 30(1): 16. https://doi.org/10.1177/0954008316674344

26. Jun Y.-S., Um J.G., Jiang G., Lui G.Yu. Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Composites Part B: Engineering. 2018. 133: 218. https://doi.org/10.1016/j.compositesb.2017.09.028

27. Trusiano G., Matta S., Bianchi M., Rizzi L.G., Frache A. Evaluation of nanocomposites containing graphene nanoplatelets: Mechanical properties and combustion behaviour. Polym. Eng. Sci. 2019. 59(10): 2062. https://doi.org/10.1002/pen.25206

28. Jun Y.-S., Um J.G., Jiang G., Lui G. Yu. A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polymer Letters. 2018. 12(10): 885. https://doi.org/10.3144/expresspolymlett.2018.76

29. Ajorloo M., Fasihi M., Ohshima M., Taki K. How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller? Mater. Des. 2019. 181(5): 108068. https://doi.org/10.1016/j.matdes.2019.108068

30. Alshammari B.A., Al-Mubaddel F.S., Karim M.R., Hossain M., Al-Mutairi A.S., Wilkinson A.N. Addition of Graphite Filler to Enhance Electrical, Morphological, Thermal, and Mechanical Properties in Poly (Ethylene Terephthalate): Experimental Characterization and Material Modeling. Polymers. 2019. 11(9): 1411. https://doi.org/10.3390/polym11091411

31. Jeon G.W., An J., Jeong Y.G. High performance cellulose acetate propionate composite reinforced with exfoliated graphene. Composites Part B: Engineering. 2012. 43(8): 3412. https://doi.org/10.1016/j.compositesb.2012.01.023

32. Shahina Riaz, Soo-Jin Park. Thermal and Mechanical Interfacial Behaviors of Graphene oxide-Reinforced Epoxy Composites Cured by Thermal Latent Catalyst. Materials. 2019. 12(8): 1354. https://doi.org/10.3390/ma12081354

33. Tarani E., Bikiaris D., Terzopoulou Z., Kyrasti T., Chrissatis K., Vourlias G. Thermal conductivity and degradation behavior of HDPE-graphene composites. J. Therm. Anal. Calorim. 2017. 129: 1715. https://doi.org/10.1007/s10973-017-6342-0

34. Gorelov B., Gorb A., Nadtochiy A., Starokadomsky D., Kuryliuk V., Shulga S., Ogenko V., Korotchenkov O., Polovina O. Loading effects in thermal properties of epoxy filled with bare and oxidized multi-layered graphene nanoplatelets: a comparative study. J. Mater. Sci. 2019. 54(12): 9247. https://doi.org/10.1007/s10853-019-03523-7

35. Pascault J.P., Williams R.J. Epoxy polymers: New materials and innovations. (Weinheim: John Wiley & Sons Inc., 2010). https://doi.org/10.1002/9783527628704

36. Xia Z.Y., Pezzini S., Treossi E., Giambastiani G., Corticelli F., Morandi V., Zanelli A., Bellani V., Palermo V. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 2013. 23(37): 4684. https://doi.org/10.1002/adfm.201370188

37. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London, New York: Academic Press, 1982).

38. Grassie N., Scott G. Polymer degradation and stabilization. In: Cambridge University Press. (Cambridge, 1988).

39. Guo Y., Zhang H., Liu Y. Desorption characteristics and kinetic parameters determination of molecular sieve by thermogravimetric analysis/differential thermogravimetric analysis technique. Adsorp. Sci. Techol. 2018. 36(11): 1389. https://doi.org/10.1177/0263617418772665




DOI: https://doi.org/10.15407/hftp11.03.291

Copyright (©) 2020 N. V. Sigareva, B. M. Gorelov, O. V. Mistchanchuk, D. L. Starokadomsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.