Аdsorption of zinc (II) on silica and alumina-silica surfaces: results of experiment and simulation
DOI: https://doi.org/10.15407/hftp11.03.304
Abstract
Studying interaction of zinc (II) with silica and alumina-silica surfaces is important for several reasons. From a practical point of view, it is carried out in the framework of the creation of a medicinal product, the ingredients of which are, in particular, silica(alumina)containing sorbent and zinc compound; from a theoretical point of view, it is a search for the adsorption patterns on the mentioned surfaces in a series of d-elements with a close electronic structure (zinc, copper, nickel, cadmium, etc.). In addition, it is advisable to supplement the experimental adsorption data with the results of quantum chemical simulation of the structure and formation energy of zinc (II) complexes with active surface centers.
Adsorption of Zn2+ ions from a neutral aqueous solution on silica and alumina-silica materials was studied by means of the method of adsorption isotherm. The specific surface of the materials was determined by method of thermal desorption of argon. Quantum chemical analysis of the structure and energy of formation of the hydrated zinc sulfate ion pair on silica and alumina-silica surfaces was performed by means of Hartree-Fock-Roothaan method with extended basis set 6‑31++G(d,p).
According to the magnitude of adsorption (A) of zinc, the test materials are divided into three groups: 1) enterosgel, kaolin, nanosilica A-300 and polymethylsiloxane, for which Аmax is from 0.15 to 0.3 mg/g; 2) Syloid® 244 FP, KG-60 and KG-40, aminopropylaerosil, smectite (Аmax from 1.2 to 12.0 mg/g); 3) zeolites NaA-TK-1173 and NaX (Аmax more than 30 mg/g). It is concluded that the high adsorption activity of zinc(II) is primarily due to the presence of developed porous structure. The most probable places of interaction between hydrated zinc ions and hydroxyl group of silica and alumina-silica surfaces are determined by means of quantum chemical simulation. The pKMe values have been calculated of ion exchange of silica surface when interacting with Zn2+ cations.
Keywords
References
1. Vallee B.L., Falchuk K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993. 73(1): 79. https://doi.org/10.1152/physrev.1993.73.1.79
2. Barbucci R., Magnani A., Lamponi S., Mitola S., Ziche M., Morbidelli L., Bussolino F. Cu(II) and Zn(II) complexes with hyaluronic acid and its sulphated derivative. Effect on the motility of vascular endothelial cells. J. Inorg. Biochem. 2000. 81(4): 229. https://doi.org/10.1016/S0162-0134(00)00127-6
3. Mumin A.N., Volotovskaya A.V. Application of curiosin electro- and phonophoresis in the trophic ulcer treatment. Int. Rev.: clin. practice and health. 2013. (3): 75. [in Russian].
4. Stepanyuk K.O., Gerashchenko I.I., Chunikhin A.Yu. A study on interaction between zinc(II) and macromolecular components of vitreous humor by UV/DLS methods. Him. Fiz. Tehnol. Poverhni. 2019. 10(2): 154. [in Ukrainian]. https://doi.org/10.15407/hftp10.02.154
5. Chang M. Chia, Jalbout F. Abraham, Lin. C. Novel descriptors based on density functional theory for predicting divalent metal ions adsorbed onto silica-disiloxane cluster model study. J. Mol. Struct. THEOCHEM. 2003. 664-665: 27. https://doi.org/10.1016/S0166-1280(03)00564-5
6. Vlasova N.N. Complex formation of 3d transition metal cations with silanol groups of silica. Surface. 2009. 1(16): 4. [in Russian].
7. Zuyi T., Hongxia Z. Acidity and Alkali Metal Adsorption on the SiO2-Aqueous Solution Interface. J. Colloid Interface Sci. 2002. 252(1): 15. https://doi.org/10.1006/jcis.2002.8277
8. Gerashchenko I.I. Enterosorbents: medicines and dietary supplements. (Kyiv: Chuiko Institute of Surface Chemistry of NAS of Ukraine, 2014). [in Ukrainian].
9. Nikolaev V.G. Enterosgel. (Kyiv: Bogdana, 2010). [in Russian].
10. Komarov V.S. Adsorption-structural, physicochemical and catalytic properties of clays of Belarus. (Minsk: Science and technology, 1970). [in Russian].
11. Gun'ko V.M., Dyachenko A.G., Borysenko M.V., Skubiszewska-Zieba J., Leboda R. CVD-Titania on Mesoporous Silica Gels. Adsorption. 2002. 8(1): 59. https://doi.org/10.1023/A:1015270523926
12. Schultz M.M. Silicates in nature and human practice. Sorosov. Educ. J. 1997. (8): 45. [in Russian].
13. Shumyatsky Yu.I., Afanasyev Yu.M. Adsorption: a process with unlimited possibilities. (Moscow: Vysshaya Shkola, 1998). [in Russian].
14. Gerashchenko I.I., Voitko I.I., Vasilieva A.V. Structural and adsorptive properties of silica-alumina and clay materials of mineral and synthetic origin. Farm. Zhurnal. 2015. (1): 63. [in Ukrainian]. https://doi.org/10.32352/0367-3057.1.15.05
15. Pre-clinical study of enterosorbents. Regulatory Document of Ministry of Health of Ukraine. 2010.
16. Krishnan R., Binkley J.S., Seeger R., Pople J.A. Selfconsistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980. 72(1): 650. https://doi.org/10.1063/1.438955
17. McLean A.D., Chandler G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys. 1980. 72(10): 5639. https://doi.org/10.1063/1.438980
18. Hariharan P.C., Pople J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta. 1973. 28(3): 213. https://doi.org/10.1007/BF00533485
19. Gibbs G.V. Molecules as models for bonding in silicates. Am. Mineral. 1982. 67(5-6): 421.
20. Hillt J.-R., Sauer J. Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on ab Initio Calculations. 2. Aluminosilicates. J. Phys. Chem. 1995. 99(23): 9536. https://doi.org/10.1021/j100023a036
21. Kravchenko A.A., Demianenko E.M., Grebenyuk A.G., Lobanov V.V. Quantum chemical simulation of silica surface protolytic equilibrium. Him. Fiz. Tehnol. Poverhni. 2014. 5(1): 16. [in Ukrainian].
22. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic-structure system: Review. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112
23. Gerashchenko I.I., Markina A.I., Pakhlov E.M., Gorchev V.F. Comparison of structural and adsorptive characteristics of preparations of kaolin and dioctaheral smectite. Farm. Zhurnal. 2012. (3): 60. [in Ukrainian].
24. Markelov D.A., Nitsak O.V., Gerashchenko I.I. A comparative study of the adsorption activity of medical sorbents. Khim.-Farm. Zhurnal. 2008. 42(7): 30. [in Russian]. https://doi.org/10.1007/s11094-008-0138-2
25. Shevchenko J.M., Slynyakova I.B., Yashyna N.I. New organosilicon porous sorbents for medicine. Farm. Zhurnal. 1995. (6): 80. [in Ukrainian].
26. Ganebnykh E.V., Sviridov A.V., Maltsev G.I. Extraction of zinc from aqueous solutions by highly dispersed modified aluminosilicates. Chemistry for Sustainable Development. 2015. (23): 89. [in Russian].
27. Shubin A.A., Zhidomirov G.M., Yakovlev A.L., van Santen R.A. Comparative Quantum Chemical Study of Stabilization Energies of Zn2+ Ions in Different Zeolite Structures. J. Phys. Chem. B. 2001. 105(21): 4928. https://doi.org/10.1021/jp004037h
28. Zhidomirov G.M., Shubin A.A., Kazansky V.B., van Santen R.A. Spectroscopic identification of adsorption properties of Zn2+ ions at cationic positions of high-silica zeolites with distant placing of aluminium ions. Theor. Chem. Acc. 2005. 114(1-3): 90. https://doi.org/10.1007/s00214-005-0648-x
29. Benco L., Bucko T., Hafner J., Toulhoat H. Periodic DFT Calculations of the Stability of Al/Si Substitutions and Extraframework Zn2+ Cations in Mordenite and Reaction Pathway for the Dissociation of H2 and CH4. J. Phys. Chem. B. 2005. 109(43): 20361. https://doi.org/10.1021/jp0530597
30. Yakovlev A.L., Shubin A.A., Zhidomirov G.M., van Santen R.A. DFT study of oxygen-bridged Zn2+ ion pairs in Zn/ZSM-5 zeolites. Catal. Lett. 2000. 70(3-4): 175. https://doi.org/10.1023/A:1018849720636
31. Derouane E. G., Fripiat J. G. Quantum Mechanical Calculations on Molecular Sieves. 1. Properties of the Si-0-T (T = Si, AI, B) Bridge in Zeolites. J. Phys. Chem. 1987. 91(1): 145. https://doi.org/10.1021/j100285a032
32. Zatsepin D.A., Zatsepin A.F., Boukhvalov D.W., Kurmaev E.Z., Pchelkina Z.V., Gavrilov N.V. Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing. J. Non.-Cryst. Solids. 2016. 432, Part B: 183. https://doi.org/10.1016/j.jnoncrysol.2015.10.002
33. Dudev T., Lim C. Tetrahedral vs Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J. Am. Chem. Soc. 2000. 122(45): 11146. https://doi.org/10.1021/ja0010296
34. Hartmann M., Clark T., Eldik R. Theoretical Study of the Water Exchange Reaction on Divalent Zinc Ion using Density Functional Theory. J. Mol. Model. 1996. 2: 354. https://doi.org/10.1007/s0089460020354.894
35. Mironyuk I.F., Gun'ko V.M., Vasylyeva H.V., Goncharuk O.V., Tatarchuk T.R., Mandzyuk V.I., Bezruka N.A., Dmytrotsa T.V. Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous Mesoporous Mater. 2019. 277: 95. https://doi.org/10.1016/j.micromeso.2018.10.016
DOI: https://doi.org/10.15407/hftp11.03.304
Copyright (©) 2020 K. O. Stepanyuk, A. A. Kravchenko, I. I. Gerashchenko, A. G. Grebenyuk, M. V. Borysenko
This work is licensed under a Creative Commons Attribution 4.0 International License.