Crystal chemistry of reactions on solid surfaces
DOI: https://doi.org/10.15407/hftp11.03.330
Abstract
If the reagent crystal has perfect cleavage, then its surface reactivity depends on its topochemical affinity with the reaction product. If the reagent cleavage is imperfect, then the surface reaction outcome is determined by crystallochemical barriers, i.e. the restrictions of positions for structural units that are imposed on those units by the lattice symmetry. In their turn, these restrictions determine "the structural preferences" of the crystallizing phase. The preferences of such kind can be characterized quantitatively by crystallochemical priorities of Fedorov groups, i.e. by relative frequencies of Fedorov groups in crystal structures. Respectively, there are primary and rare Fedorov groups of crystal structures. Paradoxal kinetic stability of thermodynamically unstable crystal phases is provided by their structure being of primary (i.e. most probable) type. On the other hand, forming a crystal structure of a rare (i.e. highly unlikely) type is possible only under condition of themodynamical stability of the structure because the rarity of a Fedorov group indicates a low "crystallochemical feasibility" of the corresponding structure.
Dispersing a crystal phase induces forming a structure with a higher crystallochemical priority. Likewise, baric effect promotes forming a structure with a more probable crystallochemical type.
Reproducibility a topochemical transformation is the evidence of regularity in the succession of crystal structures of the reagent and the reaction product. The symmetry of the crystal structure can lower not only as a result of topochemical recrystallization but also due to the crystal deformation. Hence, the deformational dissymmetrization can promote the topochemical process or suppress it.
Keywords
References
1. Ertl G. Reactions at Solid Surfaces. (Hoboken, New Jersey: John Wiley & Sons, 2009). https://doi.org/10.1002/9780470535295
2. Gun'ko V.M. Quantum chemical analysis of adsorption and mechanisms of chemical reactions at solid surface. Him. Fiz. Tehnol. Poverhni. 2010. 1(1): 5. [in Russian].
3. Boldyrev V.V. Topochemistry and topochemical reactions. Reactivity of Solids. 1990. 8(3-4): 231. https://doi.org/10.1016/0168-7336(90)80023-D
4. Dibkov V.I. Solid-phase chemical kinetics and diffusion. (Kyiv: IPM, 2002). [in Russian].
5. Zaera F. Kinetics of Chemical Reactions on Solid Surfaces: Deviations from Conventional Theory. Acc. Chem. Res. 2002. 35(2): 129. https://doi.org/10.1021/ar000193v
6. Kaupp G. Organic Solid-State Reactions. Encyclopedia of Physical Organic Chemistry. 2016. 5: 1. https://doi.org/10.1002/9781118468586.epoc2005
7. Zenkov V.S. Varying the gas medium composition to control the transformation of substances in topochemical reactions 'gas - solid'. Poroshkovaya metallurgiya. 2012. 1/2: 137. [in Russian].
8. Boldyrev V.V. Reactivity of Solids. (Novosibirsk: Nauka, 1997). [in Russian].
9. Rozovsky A.Ya. Kinetics of topochemical reactions. (Moscow: Khimia, 1974). [in Russian].
10. Filatov S.K. General concept of increasing crystal symmetry with an increase in temperature. Crystallography Reports. 2011. 56(6): 953. https://doi.org/10.1134/S1063774511060083
11. Zhaboedov A.P., Nepomnyashchikh A.I., Seredkin E.A. Phase transitions in quartz rock deposits of Bural-Sardyk. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya. 2017. 7(2): 61. [in Russian].
12. Voytekhovsky Yu.L. About the Curie dissymmetry principle. Proceedings of the Russian Mineralogical Society. 2019. 148(3): 118. [in Russian]. https://doi.org/10.30695/zrmo/2019.1483.09
13. Gafurov R.G., Zefirov N.S. A role of the molecular structure of phytoregulators in chemical signal perception by receptors of plant hormonal systems. Moscow University Chemistry Bulletin. 2007. 62(1): 52. https://doi.org/10.3103/S0027131407010129
14. Avrov D.D., Lebedev A.O., Tairov Ju.M. Polytype inclusions and polytype stability of silicon carbide. Fizika i tehnika poluprovodnikov. 2016. 50(4): 501. [in Russian]. https://doi.org/10.1134/S1063782616040059
15. Nikolin B.I. Multilayer structures and polytypism in metal alloys. (Kyiv: Naukova dumka, 1984).
16. Urusov V.S., Nadezhina T.N. "Empty" and rare spatial groups in structural mineralogy. Seriya 4: Geologiya. Vestnik Moskovskogo universiteta. 2006. 5: 52. [in Russian].
17. Urusov V.S., Nadezhina T.N. Frequency distribution and selection of space groups in inorganic crystal chemistry. J. Struct. Chem. 2009. 50(1): 22. https://doi.org/10.1007/s10947-009-0186-9
18. Baur W.H., Kassner D. Comparing the frequencies of falsely assigned space groups with their general population. Acta Cryst. 1992. 48(4): 356. https://doi.org/10.1107/S0108768191014726
19. Jones P.G. Crystal structure determination: a critical view. Chem. Soc. Rev. 1984. 13(2): 157. https://doi.org/10.1039/cs9841300157
20. Harlow R.L. Troublesome crystal structures: prevention, detection, and resolution. J. Res. Nat. Inst. Stand. Technol. 1996. 101(3): 327. https://doi.org/10.6028/jres.101.034
21. Hicks D., Mehl M.J., Gossett E., Toher C., Levy O., Hanson R.M., Hart G., Curtarolo S. The AFLOW Library of Crystallographic Prototypes: Part 2. Comput. Mater. Sci. 2019. 161: S1. https://doi.org/10.1016/j.commatsci.2018.10.043
22. Spiliadis S., Pinkerton A.A., Schwarzenbach D. Crystal and molecular structures of [AsPh4][Ln(S2PMe2)4] (Ln = Ce or Tm) and their comparison with results obtained from paramagnetic nuclear magnetic resonance data. J. Chem. Soc., Dalton Trans. 1982. 9: 1809. https://doi.org/10.1039/dt9820001809
23. Geraldes C., Sherry A. Comparison of crystal field dependent and independent methods to analyse lanthanide induced NMR shifts in axially symmetric complexes. Part II: Systems with a C4 symmetry axis. Bioinorg. Chem. Appl. 2003. 1(1): 1. https://doi.org/10.1155/S1565363303000013
24. Shablovsky Ya.O. Forming porous structure of sorbents based on metal-organic frameworks. Him. Fiz. Tehnol. Poverhni. 2019. 10(2): 190. [in Russian]. https://doi.org/10.15407/hftp10.02.190
25. Zheng Q., Kohout M., Gumeniuk R., Abramchuk N., Borrmann H. M7M′6B8 (M = Ta, Nb; M′ = Ru, Rh, Ir): New compounds with [B6] ring polyanions. Inorg. Chem. 2012. 51(14): 7472. https://doi.org/10.1021/ic201978n
26. Filatov S.K. Symmetry statistics of mineral species in various thermodynamic conditions. Proceedings of the Russian Mineralogical Society. 2019. 148(3): 1. [in Russian]. https://doi.org/10.30695/zrmo/2019.1483.00
27. Cooper M.A., Hawthorne F.C., Grew E.S. Refinement of the crystal structure of tienshanite: Short-range-order constraints on chemical composition. The Canadian Mineralogist. 1998. 36(5): 1305.
28. Burakova T.H. Crystal optics constants in microchemical analysis. (Leningrad: Izd-vo Leningr. un-ta, 1964). [in Russian].
29. Newnham R.E., Wolfe R.W., Darlington C.N. Prototype structure of Pb5Ge3O11. J. Solid State Chem. 1973. 6(3): 378. https://doi.org/10.1016/0022-4596(73)90226-0
30. Mason W.P. Piezoelectric Crystals and Their Application to Ultrasonics. (New York: Van Nostrand, 1950).
31. Yamada T., Iwasaki H., Niizeki N. Elastic and piezoelectric properties of ferroelectric 5PbO·3GeO2 crystals. J. Appl. Phys. 1972. 43(3): 771. https://doi.org/10.1063/1.1661278
32. D'yakov V.A., Pryalkin V. I., Aleksandrovsky A.L. A new ferroelastic: LiNaCO3. Ferroelectrics Letters Section. 1995. 19(5-6): 163. https://doi.org/10.1080/07315179508204718
33. D'yakov V.A., Laptinskaya T.V., Pryalkin V.I. Optical and nonlinear optical properties of LiNaCO3 single crystal. Proceedings of SPIE - The International Society for Optical Engineering. 1999. 3734(1): 415. https://doi.org/10.1117/12.342381
34. Aurivillius B. On the crystal structure of some lead fluorohalides composed of fluorite-like blocks and single halogen layers. Chemica Scripta. 1980. 15(1): 153.
35. Hagemann H., Penhouet T., Rief A., Kubel F. Crystallochemical studies in the family of crystals Ba7−xNayF12Cl2−zBrz (x < 0.1, y < 0.2, z < 1.5). Zeitschrift für anorganische und allgemeine Chemie. 2008. 634(6-7): 1041. https://doi.org/10.1002/zaac.200700594
36. Shmueli U., Weiss G.H. Introduction to Crystallographic Statistics. (Oxford: Oxford University Press, 1995).
37. Urusov V.S. Crystallochemical conditions for regular systems of points. Vestnik Moskovskogo universiteta. Seriya 4: Geologiiya. 1991. 4: 3. [in Russian].
38. Ovchinnikov V.E., Solov'yova L.P. An algorithm for deriving structural factor formulas from symmetry operators. J. Struct. Chem. 1981. 22(6): 24. [in Russian]. https://doi.org/10.1007/BF00746590
39. Somov N.V., Chuprunov E.V. On forbidden positions in crystal space. Crystallogr. Rep. 2018. 63(3): 314. [in Russian]. https://doi.org/10.1134/S1063774518030264
40. Banaru A.M. A minimal generating set of intermediate-symmetry Fedorov groups. Crystallogr. Rep. 2019. 64(2): 201. https://doi.org/10.1134/S1063774519020044
41. Lord E.A., Banaru A.M. The number of generating elements in a spatial group of a crystal. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya. 2012. 53(2): 81. [in Russian]. https://doi.org/10.3103/S0027131412020034
42. Zerroual L., Fitas R., Djellouli B., Chelali N. Relationship between α- and β-PbO2 solid-state systems. J. Power Sources. 2006. 158(2): 837. https://doi.org/10.1016/j.jpowsour.2005.11.011
43. Motooka L., Hashizume G., Kobayashi M. Effect of dry grinding on the structure of sodium tetrametaphosphates. Kogyo Kagaku Zasshi. 1968. 71(9): 1412. https://doi.org/10.1246/nikkashi1898.71.9_1412
44. Kozin L.F., Hansen S.C. Mercury Handbook: Chemistry, Applications and Environmental Impact. (London: The Royal Society of Chemistry, 2013).
DOI: https://doi.org/10.15407/hftp11.03.330
Copyright (©) 2020 Ya. O. Shablovsky
This work is licensed under a Creative Commons Attribution 4.0 International License.