Current state of researches on the formation of selenium nanoparticles and their use in medicine
DOI: https://doi.org/10.15407/hftp11.03.347
Abstract
Due to the high interest of researchers in the problem of obtaining and applying in medicine nanoscale particles of a number of elements of both metallic and nonmetallic nature, in particular, selenium, the world scientific literature of recent years contains a significant amount of information that reflects the combination of two tops scientific trends. On the one hand, it is the development of the methodology and technologies for producing nanoscale selenium systems, and on the other, the use of their unique therapeutic properties in medicine.
The aim of this work was to analyze the world scientific literature in the field of these tendencies in order to find the most effective ways to achieve specific target in the formation of selenium nanoparticles and their use in medicine, as well as the basis for obtaining new scientific and practical results in this field.
The review discusses wide new possibilities for the use of selenium in medicine, including as a part of medical preparations, in the creation of new types of biosupplements, in drug delivery systems, application materials, dressings, etc., which opened up when it became possible to form it in the form of nanoparticles. They have advantages over other used forms of selenium, diffusion properties, solubility, immunogenicity and are less toxic. This allows one to optimize significantly selenotherapy and make it more effective due to, mainly, incorporation of selenium into the composition of selenoproteins and the influence on a number of biochemical processes of the body considered here. Selenium nanoparticles can also be used in new diagnostic methods and techniques for the early diagnosis of diseases.
An analysis of synthesis methods is carried out: chemical reduction, biological, microwave, solvothermal / hydrothermal, “green” synthesis, electrodeposition and synthesis under the radiation of a pulsed laser. It has been shown that in the synthesis of ultrafine (including nanosized) particles of selenium with respect to therapy and its use in medicine, the principal problems are form factor of particles, size-dependence of their biological activity and vector of action; surface morphology and state of its adsorption layers, stabilization of dispersions are fundamental particles, which together are determined by the selected method.
The solutions in the field of surface modification of selenium particles and stabilization of their dispersions, their use as adsorption matrices and transport systems when creating conjugates from nanoparticles and biomacromolecules are considered.
Based on the analysis of the literature, as one of the conclusions of the review, an idea is drawn about the promising direction in the synthesis of nanosized particles of selenium – “green synthesis”, which is the most variable amond those considered.
The materials presented in the review reflect the wide possibilities to control the processes of formation of nanosized particles of selenium(0) in accordance with the needs of developing selenotherapy. At the same time, the combination of such pathways of their formation as chemical, biological and “green synthesis” is, as for the authors, promising for the search for the latest most effective therapeutic systems both for known diseases and for those that in the near future may turn out to be objects of selenotherapy.
Keywords
References
1. Kryukov G.V., Castellano S., Novoselov S.V., Lobanov A.V., Zehtab O., Guigó R., Gladyshev V.N. Characterization of mammalian selenoproteomes. Science. 2003. 300(5624): 1439. https://doi.org/10.1126/science.1083516
2. Bellinger F.P., Raman A.V., Reeves M.A., Berry M.J. Regulation and function of selenoproteins in human disease. Biochem. J. 2009. 422(1): 11. https://doi.org/10.1042/BJ20090219
3. Carlson B.A., Yoo M-H., Shrimali R.K., Irons R., Gladyshev V.N., D.L. Hatfield, J. Mo Park Role of selenium-containing proteins in T-cell and macrophage function. Proc. Nutr. Soc. 2010. 69(3): 300. https://doi.org/10.1017/S002966511000176X
4. Quiñonez-Flores C.M., González-Chávez S.A., Del Río Nájera D., Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. Biomed. Res. Int. 2016. 2016: 6097417. https://doi.org/10.1155/2016/6097417
5. Zhang H., Luo Y., Zhang W., He Y., Dai S., Zhang R., Huang Y., Bernatchez P., Giordano F.J., Shadel G., Sessa W.C., Min W. Endothelial-specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions. Am. J. Pathol. 2007. 170(3):1108. https://doi.org/10.2353/ajpath.2007.060960
6. Tinggi U. Selenium: its role as antioxidant in human health. Environ. Health Preventative Med. 2008. 13(2): 102. https://doi.org/10.1007/s12199-007-0019-4
7. Nazıroğlu M., Muhamad S., Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: Focus on selenium nanoparticles. Expert. Rev. Clin. Pharmacol. 2017. 10(7): 773. https://doi.org/10.1080/17512433.2017.1324781
8. Rayman M.P. Selenium and human health. Lancet. 2012. 379(9822): 1256. https://doi.org/10.1016/S0140-6736(11)61452-9
9. Ahmed H.H., El-Maksoud M.D.A., Moneim A.E.A., Aglan H.A. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol. Trace Elem. Res. 2017. 177: 267. https://doi.org/10.1007/s12011-016-0876-z
10. Rayman M.P. The importance of selenium to human health. Lancet. 2000. 356(9225): 233. https://doi.org/10.1016/S0140-6736(00)02490-9
11. Chung Y.W., Kim T.S., Lee S.Y., Lee S.H., Choi Y., Kim N., Min B.-M., Jeong D.-W., Kim I.Y. Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway. Toxicol. Lett. 2006. 160(2): 143. https://doi.org/10.1016/j.toxlet.2005.06.019
12. Steinbeck M.J., Kim J.K., Trudeau M.J., Hauschka P.V., Karnovsky M.J. Involvement of hydrogen peroxide in the differentiation of clonal HD‐11EM cells into osteoclast‐like cells. J. Cell Physiol. 1998. 176(3): 574. https://doi.org/10.1002/(SICI)1097-4652(199809)176:3<574::AID-JCP14>3.0.CO;2-#
13. Manolagas S.C., Jilka R.L. Bone marrow, cytokines, and bone remodeling-emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 1995. 332(5): 305. https://doi.org/10.1056/NEJM199502023320506
14. Rayman M.P. The importance of selenium to human health. Lancet. 2000. 356(9225): 233. https://doi.org/10.1016/S0140-6736(00)02490-9
15. Plateau P., Saveanu C., Lestini R., Dauplais M., Decourty L., Jacquier A., Blanquet S., Lazard M. Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci Rep. 2017. 7: 447. https://doi.org/10.1038/srep44761
16. Moghadaszadeh B., Beggs A. Selenoproteins and their impact on human health through diverse physiological pathways. Physiology. 2006. 21: 307. https://doi.org/10.1152/physiol.00021.2006
17. Shi L., Xun W., Yue W., Zhang C., Ren Y., Shi L., Wang Q., Yang R., Lei F. Effect of sodium selenite, Se-yeast an)d nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Res. 2011. 96(1):49. https://doi.org/10.1016/j.smallrumres.2010.11.005
18. Zhang J., Wang X., Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol. Sci. 2007. 101(1): 22. https://doi.org/10.1093/toxsci/kfm221
19. Wang J., Zhang Y., Yuan Y., Yue T. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food Chem. Toxicol. 2014. 68: 183. https://doi.org/10.1016/j.fct.2014.03.003
20. Bai K., Hong B., He J., Hong Z., Tan R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int. J. Nanomedicine. 2017. 12: 4527. https://doi.org/10.2147/IJN.S129958
21. Wang H., Zhang J., Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radic. Biol. Med. 2007. 42(10): 1524. https://doi.org/10.1016/j.freeradbiomed.2007.02.013
22. Checkman I.S., Ulberg Z.R., Malanchuk V.O. Nanoscience, nanobiology, nanoformation. (Kyiv: Polygraph Plus, 2012). [in Ukrainian].
23. Rieznichenko L.S., Dybkova S.M., Gruzina T.G., Ulberg Z.R., Todor I.N., Lukyanova N.Yu., Shpyleva S.I., Chekhun V.F. Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo. Experimental Oncology. 2012. 34(1): 25.
24. Kundiev Y.I., Ulberg Z.R., Trachtenberg M.I., Chekman I.S., Gruzina T.G., Dybkova S.M., Rieznichenko L.S., Marchenko M.L. The problem of estimation of potential risks of nanomaterials and ways of its solution. Reports of NASU. 2013. 1: 177.
25. Rieznichenko L.S., Gruzina T.G., Dybkova S.M., Ushkalov V.O., Ulberg Z.R. Investigation of bismuth nanoparticles antimicrobial activity against high pathogen microorganism. American Journal of Bioterrorism Biosecurity and Biodefense. 2015. 2(1): 1004.
26. Safety Assessment of Medicinal Nanoparticles: Guidelines. SEC of the Ministry of Health of Ukraine approved. 2013.
27. Malhotra S., Welling M., Mantri S., Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti‐chronic inflammatory arthritic effect of selenium nanoparticles. J. Biomed. Mater. Res. B. Appl. Biomater. 2016. 104(5): 993. https://doi.org/10.1002/jbm.b.33448
28. Maiyo F., Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine. 2017. 12(9): 1075. https://doi.org/10.2217/nnm-2017-0024
29. Chen L., Remondetto G.E., Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 2006. 17(5): 272. https://doi.org/10.1016/j.tifs.2005.12.011
30. Yao M., Mc. Clements D.J., Xiao H. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Curr. Opin. Food Sci. 2015. 2: 14. https://doi.org/10.1016/j.cofs.2014.12.005
31. Hosnedlova B., Skalickova S., Fermander C., Ruttkay-Nedecky B., Peng Q., Baron M., MelcovaM., Opatrilova R., Zidkova J., Bjorklund G., Sochor J., Kizek R. Nano-selenium and its nanomedicine applications a critical review. Int. J. Nanomedicine. 2018. 13: 2107. https://doi.org/10.2147/IJN.S157541
32. Walsh S., Balbus J.M.M., Denison R., Florini K. Nanotechnology: getting it right the first time. J. Cleaner. Prod. 2008. 16(8-9):1018. https://doi.org/10.1016/j.jclepro.2007.04.015
33. Abdelouas A., Gong W.L., Lutze W., Shelnutt J.A., Franco R., Moura I. Using cytochrome c 3 to make selenium nanowires. Chem. Mater. 2000. 12(6): 1510. https://doi.org/10.1021/cm990763p
34. Gao X., Zhang J., Zhang L. Hollow sphere selenium nanoparticles: Their in-vitro antihidroxyl radical effect. Adv. Mater. 2002. 14(4): 290. https://doi.org/10.1002/1521-4095(20020219)14:4<290::AID-ADMA290>3.0.CO;2-U
35. An C., Wang S. Diameter-selected synthesis of single crystalline trigonal selenium nanowires. Mater. Chem. Phys. 2007. 101(2-3): 357. https://doi.org/10.1016/j.matchemphys.2006.06.011
36. Yu B., You P., Song M., Zhou Y., Yu F., Zheng W. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability. New J. Chem. 2016. 40(2): 1118. https://doi.org/10.1039/C5NJ02519B
37. Sharma G., Sharma A.R., Bhavesh R., Park J., Ganbold B., Nam J.S., Lee S.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried vitis vinifera (raisin) extract. Molecules. 2014. 19(3): 2761. https://doi.org/10.3390/molecules19032761
38. Nandhakumar I., Elliott J.M., Attard G.S. Electrodeposition of Nanostructured Mesoporous Selenium Films (HI-eSe). Chem. Mater. 2001. 13(11): 3840. https://doi.org/10.1021/cm010484d
39. Overschelde O.V., Guisbiers G., Snyders R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Mater. 2013. 1(4): 042114. https://doi.org/10.1063/1.4824148
40. Oremland R.S., Herbel M.J., Blum J.S, Langley S., Beveridge T.J., Ajayan P.M., Sutto T., Ellis A.V., Curran S. Structural and spectral features of selenium nanospheres produced by Se-respiring bacterial. Appl. Environ. Microbiol. 2004. 70(1): 52. https://doi.org/10.1128/AEM.70.1.52-60.2004
41. Kuroda M., Notaguchi E., Sato A., Yoshioka M., Hasegawa A., Kagami T., Narita T., Yamashita M., Sei K., Soda S., Biosci Ike M.J. Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J. Biosci. Bioeng. 2011. 112(3): 259. https://doi.org/10.1016/j.jbiosc.2011.05.012
42. Yadav V., Sharma N., Prakash R., Raina K., Bhardwaj L., Prakash T. Generation of selenium containing nano-structures by soli bacterium, Pseudomonas aeruginosa. Biotechnology. 2008. 7(2): 299. https://doi.org/10.3923/biotech.2008.299.304
43. Hunter W.J., Kuykendall L.D., Manter D.K. Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. Curr. Microbiol. 2007. 55: 455. https://doi.org/10.1007/s00284-007-9020-9
44. Torres S.K., Campos V.L., León C.G., Rodríguez-Llamazares S.M., Rojas S.M,. González M, Smith C., Mondaca M.A. Biosynthesisof selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart. Res. 2012. 14: 1236. https://doi.org/10.1007/s11051-012-1236-3
45. Dhanjal S., Cameotra S.S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb. Cell Fact. 2010. 9: 52. https://doi.org/10.1186/1475-2859-9-52
46. Prakash N.T., Sharma N., Prakash R., Raina K.K., Fellowes J., Pearce C.I., Lloyd J.R., Pattrick, R.A.D. Aerobic microbial manufacture of nanoscale selenium: exploiting nature's bio-nanomineralization potential. Biotechnol. Lett. 2009. 31: 1857. https://doi.org/10.1007/s10529-009-0096-0
47. Zannoni D., Borsetti F., Harrison J.J., Turner R.J. The bacterial response to the chalcogen metalloids Se and Te. Adv. Microb. Physiol. 2008. 53: 1.https://doi.org/10.1016/S0065-2911(07)53001-8
48. Pearce C.I., Pattrick R.A.D., Law N., Charnock J.M., Coker V.S., Fellowes J.W., Oremland R.S., Lloyd J.R. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypical. Environ. Technol. 2009. 30(12): 1313. https://doi.org/10.1080/09593330902984751
49. Dobias J., Suvorova E.I., Bernier-Latmani R. Role of proteins in controlling selenium nanoparticle size. Nanotechnology. 2011. 22(19): 195605. https://doi.org/10.1088/0957-4484/22/19/195605
50. Ramos J.F., Webster T.J. Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts. Int. J. Nanomedicine. 2012. 7: 3907. https://doi.org/10.2147/IJN.S33767
51. Chen H., Shin D.W., Nam J.G., Kwon K.W., Yoo J.B. Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater. Res. Bull. 2010. 45(6): 699. https://doi.org/10.1016/j.materresbull.2010.02.016
52. Langi B., Shah C., Singh K., Chaskar A., Kumar M., Bajaj P.N. Ionic liquid-induced synthesis of selenium nanoparticles. Mater. Res. Bull. 2010. 45(6): 668. https://doi.org/10.1016/j.materresbull.2010.03.005
53. Abdelouas A., Gong W.L., Lutze W., Shelnutt J.A., Franco R., Moura I. Using Cytochrome c3 To Make Selenium Nanowires. Chem. Mater. 2000. 12(6): 1510. https://doi.org/10.1021/cm990763p
54. Gates B., Mayers B., Cattle B., Xia Y. Synthesis and Characterization of Crystalline Ag2Se Nanowires Through a Template‐Engaged Reaction at Room Temperature. Adv. Funct. Mater. 2002. 12(10): 219. https://doi.org/10.1002/1616-3028(20021016)12:10<679::AID-ADFM679>3.0.CO;2-#
55. Ma J., Liu X., Wu Y., Peng P., Zheng W. Controlled synthesis of selenium of different morphologies at room temperature. Cryst. Res. Technol. 2008. 43(10): 1052. https://doi.org/10.1002/crat.200800058
56. Dwivedi C., Shah C.P., Singh K., Kumar M., Bajaj P.N. An organic acid-induced synthesis and characterization of selenium nanoparticles. Journal of Nanotechnology. J. Nanotechnol. 2011. 2011: 1. https://doi.org/10.1155/2011/651971
57. Lin Z., Lin F., Wang C. Observation in the growth of selenium nanoparticles. J. Chinese Chem. Soc. 2004. 51(2): 239. https://doi.org/10.1002/jccs.200400038
58. Barnaby S.N., Sarker N.H., Dowdell A.P., Banerjee I.A. The Spontaneous Formation of Selenium Nanoparticles on Gallic Acid Assemblies and their Antioxidant Properties. The Fordham Undergraduate Research Journal. 2011. 1(1): 41.
59. Li Z., Hua P. Synthesis and Characterization of Selenium Nanoparticles Using Natural Resources and Its Applications. E-Journal Chem. 2009. 304: 6.
60. Li Q., Chen T., Yang F., Liu J., Zheng W. Facile and controllable one-step fabrication of selenium nanoparticles assisted by l-cysteine. Mater. Lett. 2010. 64(5): 614. https://doi.org/10.1016/j.matlet.2009.12.019
61. Zhang S.Y., Zhang J., Wang H.Y., Chen H.Y. Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater. Lett.2004. 58(21): 2590. https://doi.org/10.1016/j.matlet.2004.03.031
62. Pomogaylo A.D., Rozenberg A.S., Uflyand I.Ye. Metal nanoparticles in polymers. (Moscow: Khimiya, 2000). [in Russian].
63. Lu A.H., Salabas E.L., Schüth F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. 2007. 46(8): 1222. https://doi.org/10.1002/anie.200602866
64. Kopeykin V.V., Panarin Ye.F. Water-soluble nanocomposites of zero valentsilver with increased antimicrobial activity. Rep. Academy of Sciences. 2001. 380(4):497. [in Russian].
65. Patent US 6224898B1. Balogh L., Swanson D.R., Tomalia D.A., Hagnauer G.L., McManus A.T. Antimicrobial Dendrimer Nanocomposites and a Methodof Treating Wounds. 2001.
66. Connelly S., Fitzmaurice D. Programmed Assembly of Gold Nanocrystals in Aqueous Solution. Adv. Mater. 1999. 11(14): 1202. https://doi.org/10.1002/(SICI)1521-4095(199910)11:14<1202::AID-ADMA1202>3.0.CO;2-H
67. Patent US 4954452. Yost D.A., Russell J.C., Yang H. Non-Metal Colloidal Particle Immunoassay. 1990.
68. EP App. 0 299428 A2. Ching S., Gordon J., Billing P.A. Process for Immunochromatography with Colloidal Particles. 1988.
69. Zhang J.S., Gao X.Y., Zhang L.D., Bao Y.P. Biological effects of a nano red elemental selenium. Biofactors. 2001. 15(1): 27. https://doi.org/10.1002/biof.5520150103
70. Lide R.D. Handbook of Chemistry and Physics. 81th Edition. (Chapman & Hill CRC, 2001).
71. Kopeykin V.V., Valuyeva S.V., Kipper A.I., Borovikova L.N., Filippov A.P. Synthesis of selenium nanoparticles in aqueous solutions of polyvinylpyrrolidone and morphological characteristics of the resulting nanocomposites. Polymer Science. 2003. 45A(4): 615. [in Russian].
72. Kopeykin V.V., Valuyeva S.V., Kipper A.I., Filippov A.P., Borovikova L.N., Suvorova Ye.I., Nazarkina Y.I., Ostrovskaya L.D. The formation of selenium nanoparticles in the redox system of selenite-ascorbate in aqueous solutions of polyelectrolyte complexes of various compositions. J. Appl. Chem. 2005. 78(9): 1514. [in Russian]. https://doi.org/10.1007/s11167-005-0544-0
73. Valuyeva S.V., Kopeykin V.V., Kipper A.I., Filippov A.P., Shishkina G.V., Khlebosolova Ye.N., Rumyantseva N.V., Nazarkina YA.I., Borovikova L.N. The formation of zero valent selenium nanoparticles in aqueous solutions of polyampholyte in the presence of various redox systems. Polymer Science. 2005. 47B(5): 857. [in Russian].
74. Valuyeva S.V., Kipper A.I., Kopeykin V.V., Borovikova L.N., Ivanov D.A., Filippov A.P. The effect of the molecular weight of the polymer matrix on the morphological characteristics of selenium-containing nanostructures and on their resistance to the influence of ahy drodynamic field. Polymer Science. 2005. 47A(3): 438. [in Russian].
75. Valuyeva S.V., Kipper A.I., Kopeykin V.V., Borovikova L.N., Lavrent'yev V.K., Ivanov D.A., Filippov A.P. Studying the processes of formation and morphological characteristics of selenium-containing nanostructures based on rigid-chain molecules of cellulose derivatives. Polymer Science. 2006. 48A(8): 1403. [in Russian]. https://doi.org/10.1134/S0965545X06080062
76. Valuyeva S.V., Borovikova L.N., Koreneva V.V., Nazarkina YA.I., Kipper A.I., Kopeykin V.V. Structural - morphological and biological properties of selenium nanoparticles stabilized by bovine serum albumin. Russ. J. Phys. Chem. 2007. 81(7): 1329. [in Russian]. https://doi.org/10.1134/S0036024407070291
77. Valueva S.V., Borovikova L.N., Sukhanova T.E., Vylegzhanina M.E., Matveeva N.A. Gelfond M.L. Self-organization and structure of selenium-containing biologically active nanosystems. Structure and Dynamics of Molecular Systems. 2011. 10A: 15. [in Russian].
78. Kopeykin V.V., Valuyeva S.V., Kipper A.I., Filippov A.P., Khlebosolova Ye.N., Borovikova L.N., Lavrentyev V.K. Investigation of the formation of nano-Se0 particles in an aqueous solution of a cationic polyelectrolyte. J. Appl. Chem. 2003. 76(5): 847. [in Russian].
79. Mayer A.B.R. Colloidal Metall Nanoparticles Dispersed in Amphiphilic Polymers. Polym. Adv. Technol. 2001. 12(1-2): 96. https://doi.org/10.1002/1099-1581(200101/02)12:1/2<96::AID-PAT943>3.0.CO;2-G
80. Valuyeva S.V., Borovikova L.N., Kipper A.I. Effect of the ratio of components of the selenium: polyvinylpyrrolidone complex on the formation and morphological characteristics of nanostructures. Russ. J. Phys. Chem. 2008. 82(6): 1131. [in Russian]. https://doi.org/10.1134/S0036024408060241
81. Kopeykin V.V. Doctoral (Chem.) Thesis. (Moscow, 1999). [in Russian].
82. Panov D.A., Pyslar E.V. Chymotrypsin − stabilizer of selenium nanoparticles. Scientific notes of Taurida National University by Vernadsky. Series "Biology, Chemistry". 2014. 27(66)(4): 117. [in Russian].
83. Li Q., Chen T., Yang F., Liu J., Zheng W. Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine. Mater. Lett. 2010. 64(5): 614. https://doi.org/10.1016/j.matlet.2009.12.019
84. Panova E.P., Osmanova A.A. The study of the interaction of sodium selenite with l-cysteine by the potentiometric method. Scientific notes of Taurida National University by Vernadsky. Series "Biology, Chemistry". 2014. 27(66)(1): 292.[in Russian].
85. Ingole Atul. R., Thakare Sanjay R., Khati N.T., Wankhade Atul V., Burghate D.K. Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Letters. 2010.7(7): 485.
86. Hotimchenko Y.S., Kovalev V.V.Physicochemicalproperties, physiologicalactivityandapplicationofalginates - polysaccharidesofbrownalgae. Marine Biology. 2001. 27(3): 151. [in Russian].
87. Yurkova I.N., Panov D.A. Nanocomposition of silver in the sodium alginate matrix. In: Trends and innovations of fundamental and applied sciences. V. 3. (Stavropol': Tsentr nauchnogo znaniya «Logos», 2016). P. 98. [in Russian].
88. Panov D.A. Preparation and properties of the nanobiocomposite of selenium and sodium alginate. Scientific notes of the Crimean Federal University by Vernadsky.Series "Biology, Chemistry". 2017. 3(69)(1): 91. [in Russian].
89. Malhotra S., Jha N., Desai K. A superficial synthesis of selenium nanospheres using wet chemical approach. Int. J. Nanotechnol. Appl. 2014. 3(4): 7.
90. Zhang J., Zhou X., Yu Q., Yang L., Sun D., Zhou Y., Liu J. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl. Mater. Interfaces. 2014. 6(11): 8475. https://doi.org/10.1021/am501341u
91. Borovikova L.N., Matveeva N.A., Baklagina Y.G., Khripunov A.K., Tkachenko A.A. Formation of a composite based on selenium nanoparticles stabilized with poly-N,N,N,N-trimethylmethacryloyloxyethylammonium methyl sulfate and on Acetobacter xylinum cellulose gel films. Russ. J. Appl. Chem. 2009. 82: 2006. [in Russian]. https://doi.org/10.1134/S1070427209110196
92. Shah C., Kumar M., Bajaj P. Acid-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Nanotechnology. 2007. 18(38): 385607. https://doi.org/10.1088/0957-4484/18/38/385607
93. Kong H., Yang J., Zhang Y., Fang Y., Nishinari K., Phillips G.O. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int. J. Biol. Macromol. 2014. 65: 155. https://doi.org/10.1016/j.ijbiomac.2014.01.011
94. Zhang Y., Wang J., Zhang L. Creation of Highly Stable Selenium Nanoparticles Capped with Hyperbranched Polysaccharide in Water. Langmuir. 2010. 26(22): 17617. https://doi.org/10.1021/la1033959
95. Wu H., Li X., Liu W., Chen T., Li Y., Zheng W., Man C.W.Y., Wong M.K., Wong K.H. Surface decoration of selenium nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and antiproliferative activity. J. Mater. Chem. 2012. 22(19): 9602. https://doi.org/10.1039/c2jm16828f
96. Shen Y., Wang X., Xie A., Huang L., Zhu J., ChenL. Synthesis of dextran/Se nanocomposites for nanomedicine application. Mater .Chem. Phys. 2008. 109(2-3): 534. https://doi.org/10.1016/j.matchemphys.2008.01.016
97. Dhanjal S., Cameotra S.S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb. Cell Fact. 2010. 9: 52. https://doi.org/10.1186/1475-2859-9-52
98. Prasad K.S., Patel H., Patel T., Patel K., Selvaraj K. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf. B. 2013. 103: 261. https://doi.org/10.1016/j.colsurfb.2012.10.029
DOI: https://doi.org/10.15407/hftp11.03.347
Copyright (©) 2020 Z. R. Ulberg, V. A. Prokopenko, E. A. Tsyganovich, R. V. Horda
This work is licensed under a Creative Commons Attribution 4.0 International License.