Chemistry, Physics and Technology of Surface, 2020, 11 (3), 411-419.

Obtaining of zirconium silicate materials of aerogel type from aqueous solutions of Na2SiO3 and ZrOCl2 salts



DOI: https://doi.org/10.15407/hftp11.03.411

M. V. Kravchenko, A. V. Redkina, N. D. Konovalova

Abstract


Aerogels are gels in which the liquid phase is completely replaced by a gaseous one. They form a new class of solids with a very low density, a large specific surface area and high porosity, which opens up wide possibilities for their practical application. ZrO2-SiO2 aerogels, due to the strong binding energy of Zr-O-Si, very low thermal conductivity, and the presence of acid and basic centers, exhibit excellent properties like aerospace heat insulators, selective sorbents, catalysts, and catalyst supports for high-temperature reactions. The traditional way of obtaining aerogels is formation of a branched, three-dimensional, irregular network of wet gels by sol-gel synthesis from alkoxides of elements, aging of gels, replacement of intermicillar water by organic liquids with low surface tension and careful removal of the solvent by drying under supercritical conditions or under ambient pressure. But alkoxides of the elements are expensive and toxic, drying at elevated pressures requires special equipment and is also expensive and energy-intensive, and drying at atmospheric pressure requires complicated and lengthy gel modifications. In this work, the task was posed, on the basis of the direct method of large-scale sol-gel synthesis of highly porous, nanostructured, spherically granulated zirconium silicates from aqueous solutions of cheap, accessible salts, to obtain materials of aerogel type, without resorting to lengthy equipmently and chemically complex methods of processing the resulting hydrogels. The gels were prepared by forming a zirconium carbonate complex from aqueous solutions of ZrOCl2 and K2CO3 and its subsequent interaction with a Na2SiO3 solution by their coagulation in a drop. The obtained strong spherical granules of ZrO2 SiO2·nH2O hydrogel were thoroughly washed from impurities with distilled water and subjected to hydrothermal treatment for various times, followed by decantation with ethanol mixed with benzine or alkothermal treatment in this mixture in tightly closed containers at supercritical temperature for ethanol. The heat resistance of the samples was determined by calcining them in air at high temperature. Using SEM, XRD, and N2 adsorption / desorption methods, it has been found that the amorphous Zr-Si materials obtained containing 45 wt. % ZrO2 have a specific surface area of more than 500 m2/g, pore volume > 2 cm3/g, average pore diameter of ~ 18 nm, wide mesopores with a diameter of ~ 28 nm, bulk density less than 0.3 g/cm3, which typical for aerogels based on oxides of metal and silicon, and exhibit high thermal stability.


Keywords


ZrO2-SiO2 aerogels; sol-gel synthesis; supercritical drying; alkothermal treatment; mesoporous materials

Full Text:

PDF

References


1. Hüsing N., Schuber U. Aerogels - Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998. 37(1-2): 22. https://doi.org/10.1002/1521-3773(19980202)37:1/2<22::AID-ANIE22>3.3.CO;2-9

2. Pierre A.C., Pajonk G.M. Chemistry of aerogels and their applications. Chem. Rev. 2002. 102(11): 4243. https://doi.org/10.1021/cr0101306

3. Dorcheh A.S., Abbasi M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 2008. 199(1-3): 10. https://doi.org/10.1016/j.jmatprotec.2007.10.060

4. Sinkó K. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Materials. 2010. 3(1): 704. https://doi.org/10.3390/ma3010704

5. Du A., Zhou B., Zhang Z., Shen J. A special material or a new state of matter: a review and reconsideration of the aerogel. Materials. 2013. 6(3): 941. https://doi.org/10.3390/ma6030941

6. Maleki H., Husing N. Current Status, Opportunities and Challenges in Catalytic and Photocatalytic Applications of Aerogels: Environmental Protection Aspects. Appl. Catal. B. 2018. 221: 530. https://doi.org/10.1016/j.apcatb.2017.08.012

7. Hrubesh L.W., Pekala R.W. Thermal Properties of Organic and Inorganic Aerogels. J. Mater. Res. 1994. 9(3): 731. https://doi.org/10.1557/JMR.1994.0731

8. Torres-Rodrigues J., Kalmar J., Menelaou M., Celko L., Dvorak K., Cihlar J., Cihlar Jr J., Kaiser J., Gyori E., Veres P., Fabian I., Lazar I. Heat Treatment Induced Phase Transformations in Zirconia and Yttria-Stabilized Zirconia Monolithic Aerogels. J. Supercrit. Fluids. 2019. 149: 54. https://doi.org/10.1016/j.supflu.2019.02.011

9. Hou X., Zhang R., Fang D. An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength. Scr. Mater. 2018. 143(15): 113. https://doi.org/10.1016/j.scriptamat.2017.09.028

10. Liu B., Gao M., Liu X., Zhao X., Zhang J., Yi X. Thermally Stable Nanoporous ZrO2/SiO2 Hybrid Aerogels for Thermal Insulation. ACS Appl. Nano Mater. 2019. 2(11): 11. https://doi.org/10.1021/acsanm.9b01791

11. Kistler S. Coherent expanded-aerogels. J. Phys. Chem. 1932. 36(1): 52. https://doi.org/10.1021/j150331a003

12. Teichner S.J., Nicolaon G.A., Vicarini M.A., Gardes G.E.E. Inorganic oxide aerogels. Adv. Colloid Interface Sci. 1976. 5(3): 245. https://doi.org/10.1016/0001-8686(76)80004-8

13. Wu Z.-G., Zhao Y.-X., Liu D.-S. The synthesis and characterization of mesoporous silica-zirconia aerogels. Microporous Mesoporous Mater. 2004. 68(1-3): 127. https://doi.org/10.1016/j.micromeso.2003.12.018

14. He X.D., Zhang H.X., LiY., Hong C.Q. Characterization of Nano-porous Silica-Zirconia Aerogels. Solid State Phenomena. 2007. 121-123: 1289. https://doi.org/10.4028/www.scientific.net/SSP.121-123.1289

15. Schafer H., Brandt S., Milow B., Ichilmann S., Steinhart M., Ratke L. Zirconia-Based Aerogels via Hydrolysis of Salts and Alkoxides: The Influence of the Synthesis Procedures on The Properties of the Aerogels. Chem. Asian. J. 2013. 8(9): 2211. https://doi.org/10.1002/asia.201300488

16. Wang X., Wu Z., Zhi M., Hong Z. Synthesis of high temperature resistant ZrO2-SiO2 composite aerogels via "thiol-ene" click reaction. J. Sol-Gel Sci. Technol. 2018. 87(2): 1. https://doi.org/10.1007/s10971-018-4766-z

17. Smitha S., Shajesh P., Aravind P., Kumar S.R., Pillai P.K., Warrier K. Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater. 2006. 91(1): 286. https://doi.org/10.1016/j.micromeso.2005.11.051

18. Strim R.A., Masmoudi Y., Rigacci A., Petermann G., Gullberg L., Chevalier B., Einarsrud M.A. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J. Sol-Gel Sci. Technol. 2007. 41(3): 291. https://doi.org/10.1007/s10971-006-1505-7

19. Omranpour H., Motahari S. Effects of processing conditions on silica aerogel during aging: role of solvent, time and temperature. J. Non-Cryst. Solids. 2013. 379: 7. https://doi.org/10.1016/j.jnoncrysol.2013.07.025

20. Lermontova S.A, Malkova A.N., Sipyagina N.A.,.Yorovb Kh.E, Kopitsac G.P., Baranchikovb A.E., Ivanove V.K., Pipichg V., Szekelyg N.K. Comparative Analysis of the Physicochemical Characteristics of SiO2 Aerogels Prepared by Drying under Subcritical and Supercritical Conditions. Inorg. Mater. 2017. 53(12): 1270. https://doi.org/10.1134/S002016851712007X

21. Suh D.J., Park T.-J. Synthesis of High-Surface-Area Zirconia Aerogels with a Well-Developed Mesoporous Texture Using CO2 Supercritical Drying. Chem. Mater. 2002. 14(4): 1452. https://doi.org/10.1021/cm025516r

22. Bhagat S.D., Kim Y.-H., Ahn Y.-S. Yeo J.-G. Rapid synthesis of water-glass based aerogels by in situ surface modification of the hydrogels. Appl. Surf. Sci. 2007. 253(6): 3231. https://doi.org/10.1016/j.apsusc.2006.07.016

23. Shao Z., Luo F., Cheng X., Zhang Y. Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying. Mater. Chem. Phys. 2013. 141(1): 570. https://doi.org/10.1016/j.matchemphys.2013.05.064

24. Bangi U.K.H., Jung I.-K., Park C.-S., Baek S., Park H.-H. Optically transparent silica aerogels based on sodium silicate by a two step sol-gel process and ambient pressure drying. Solid State Sci. 2013. 18: 50. https://doi.org/10.1016/j.solidstatesciences.2012.12.016

25. Patent UA 105999 U. Yakovlev V.I., Strelko V.V., Kravchenko M.V. Sol-gel method of obtaining spherically granular highly porous zirconium silicate. 2016. [in Ukrainian].

26. Afanasiev P. Zr(IV) basic carbonate complexes as precursors for new materials: synthesis of the zirconium-surfactant mesophase. Mater. Res. Bull. 2002. 37(12): 1933. https://doi.org/10.1016/S0025-5408(02)00886-3

27. Tarafdar A., Panda A.B., Pramanik P. Synthesis of ZrO2-SiO2 mesocomposite with high ZrO2 content via a novel sol-gel method. Microporous Mesoporous Mater. 2005. 84(1-3): 223. https://doi.org/10.1016/j.micromeso.2005.05.014

28. Chemist's Handbook 21. Coagulation in drops. https://www.chem21.info/info/255432/

29. Raju V., Jaenicke S., Chuah G.-K. Effect of hydrothermal treatment and silica on thermal stability and oxygen storage capacity of ceria-zirconia. Appl. Catal. B. 2009. 91(1-2): 92. https://doi.org/10.1016/j.apcatb.2009.05.010

30. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid systems - with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985. 57(4): 603.

31. Kirkbir F., Murata H., Meyers D., Chaudhuri S.R. Drying of aerogels in different solvents between atmospheric and supercritical pressures. J.Non-Cryst. Solids. 1998. 225: 14. https://doi.org/10.1016/S0022-3093(98)00003-9

32. Gross J., Coronado P., Hrubesh L. Elastic properties of silica aeroge s from a new rapid supercritical extraction process. J. Non-Cryst Solids. 1998. 225: 282. https://doi.org/10.1016/S0022-3093(98)00045-3

33. Mazraeh-shahi Z.T., Shoushtari A.M., Abdouss M., Bahramian A.R. Relationship analysis of processing parameters with micro and macro structure of silica aerogel dried at ambient pressure. J. Non-Cryst. Solids. 2013. 376: 30. https://doi.org/10.1016/j.jnoncrysol.2013.04.039

34. del Monte F., Larsen W., Mackenzie J.D. Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides. Am. Chem. Soc. 2000. 83(3): 628.  https://doi.org/10.1111/j.1151-2916.2000.tb01243.x




DOI: https://doi.org/10.15407/hftp11.03.411

Copyright (©) 2020 M. V. Kravchenko, A. V. Redkina, N. D. Konovalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.