Use of absorption spectra for identification of endometallofullerenes
DOI: https://doi.org/10.15407/hftp11.03.429
Abstract
Endohedral fullerenes (EEFs) are of particular interest for researchers because their molecules have a unique structure and, so, physicochemical properties. The chemical elements used to alloy the electrodes give new properties to the spherical molecules formed during the synthesis process. In this direction, there are still many unsolved problems related to the understanding of the processes that take place in the carbon plasma containing impurities of different chemical composition, as well as the processes of extraction, isolation, separation and identification of products. The research focused on optimizing the conditions for the synthesis of EEF-containing carbon black (a mixture of products formed during the arc synthesis of endometallofullerenes), the development of new approaches to the synthesis of EEF derivatives and of effective methods for extracting EEF from synthesis products. Quick identification of the resulting product will accelerate research in this area.
The aim of the study was to examine the electronic absorption spectra of the extracts obtained by isolating endometallofullerenes and fullerenes from carbon black obtained in the experiments. This is necessary to identify the characteristics of their absorption spectra for further use to determine the synthesized products by spectrophotometric method. Endohedral fullerenes were obtained by the most common and productive method of electric arc synthesis.
The paper describes the study of materials formed by the joint arc evaporation of graphite and metals. The scheme of two-stage extraction of EEF from fullerene-containing carbon black was used, which made it possible to obtain dimethylformamide (DMF) solutions of practically pure endometallofullerenes. A possibility of using spectrometry for the identification of endometallofullerenes has been shown and it is proposed to use the spectrophotometric method for their detection. It has been found that the purest fullerites are formed under conditions if extraction and crystallization are carried out at the lowest possible temperatures.
Keywords
References
1. Sementsov Yu.I.; Alekseeva T.A. Pyatkovsky M.L., Prikhod'ko G.P., Gavrilyuk N.A., Kartel N.T., Grabovsky Yu.E., Gorchev V.F., Chunihin A.Yu. Deagglomeration of multi-walled carbon nanotubes (CNTs) and preparation of polymer / CNT nanocomposites. In: Hydrogen materials science and chemistry of carbon nanomaterials (ICHMS'2009). IX Int. Conf. (Yalta, Crimea, Ukraine, 2009). P. 782-785. [in Russian].
2. Gun'ko G.S., Sementsov Yu.I, Melezhik O.V., Prikhod'ko G.P., Pyatkovskiy M.L., Gavrylyuk N.A., Kartel M.T. CVD-method and equipment for MWCNT obtaining. In: Clusters and nanostructured materials (CNM-2). Int. Meeting. (Uzhgorod, Ukraine, 2009). P. 158.
3. Trefilov V.I., Schur D.V., Zaginaichenko S.Yu. Fullerenes - the basis of the materials of the future. (Kyiv: ADEF-Ukraine, 2001). [in Russian].
4. Schur D.V., Dubovoy A.G., Zaginaichenko S.Y., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov, S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. (Springer, Dordrecht, Netherlands, 2007). P. 199-212. https://doi.org/10.1007/978-1-4020-5514-0_25
5. Havryliuk N.A., Shevchuk O.M., Prikhod'ko G.P., Kartel M.T. Graphene oxide: preparation, properties, applications (review). Him. Fiz. Tehnol. Poverhni. 2015. 6(4): 413. [in Ukrainian]. https://doi.org/10.15407/hftp06.04.413
6. Popov A.A. Endohedral fullerenes: electron transfer and spin. In: Synthesis and molecular structures of endohedral fullerenes. (Cham.Chapter, Switzerland: Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-47049-8
7. Eletskii A.V. Endohedral structures. Phys. Usp. 2000. 43(2): 111. [in Russian]. https://doi.org/10.1070/PU2000v043n02ABEH000646
8. Anikina N.S., Krivushchenko O.Ya., Schur D.V., Zaginaichenko S.Yu., Chuprov S.S., Milto K.A., Zolotarenko A.D. Identification of endohedral metallofullerenes by UV-VIS spectroscopy. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. IX Int. Conf. (Sevastopol, Crimea, Ukraine, 2005). P. 848-849. [in Russian].
9. Anikina N.S., Schur D.V., Zaginaichenko S.Yu., Zolotarenko A.D., Milto K.A. Determination of the ratio of fullerenes C60 and C70 by absorption spectroscopy. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. IX Int. Conf. (Sevastopol, Crimea, Ukraine, 2005). P. 857-558. [in Russian].
10. Stevenson S., Burbank P., Harich K., Sun Z., Dorn H.C., Van Loosdrecht P.H.M., DeVries M.S., Salem J.R., Kiang C.H., Johnson R.D., Bethune D.S. La2@C72: Metal-mediated stabilization of a carbon cage. J. Phys. Chem. A. 1998. 102(17): 2833. https://doi.org/10.1021/jp980452m
11. Kareev I.E., Lebedkin S.F., Bubnov V.P., Yagubskii E.B., Ioffe I.N., Khavrel P.A., Kuvychko I.V., Strauss S.H., Boltalina O.V. Trifluoromethylated endohedral metallofullerenes: synthesis and characterization of Y@C82(CF3)5. Angew. Chem. Int. Ed. 2005. 44(12): 1846. https://doi.org/10.1002/anie.200461497
12. Dorn H.C., Steveson S., Burbank P., Harrich K. Isolation and structure of Sc2@C74 and Sc2@C78 In: Fullerenes: Recent advances in the chemistry and physics of fullerenes and related materials. V. 6. (NJ: Electrochem. Soc., 1998). P. 990-1002.
13. McElvany S.W. Production of endohedral yttrium-fullerene cations by direct laser vaporization. J. Phys. Chem. 1992. 96(12): 4935. https://doi.org/10.1021/j100191a039
14. Kareev I.E., Bubnov V.P., Fedutin D.N. High-performance electric arc reactor for the synthesis of soot with a high content of endohedral metallofullerenes. Tech. Phys. 2009. 79(11): 134. [in Russian]. https://doi.org/10.1134/S1063784209110231
15. Lin N., Huang H.J., Yang S.H., Cue N. Scanning tunneling microscopy of ring-shape endohedral metallofullerene (Nd@C82)6,12 clusters. J. Phys. Chem. A. 1998. 102(24): 4411. https://doi.org/10.1021/jp980960w
16. Buchachenko A.L. Chemistry on the border of two centuries - achievements and prospects. Russ. Chem. Rev. 1999. 68(2): 99. https://doi.org/10.1070/RC1999v068n02ABEH000487
17. Kessler B., Bringer A., Cramm S., Schlebusch C., Eberhardt W. Evidence for incomplete charge transfer and La-derived states in the valence bands of endohedrally doped La@C82 Phys. Rev. Lett. 1997. 79(12): 2289. https://doi.org/10.1103/PhysRevLett.79.2289
18. Poirier D.M., Knupfer M., Weaver J. H., Andreoni W., Laasonen K., Parrinello M., Bethune D.S., Kikuchi K., Achiba Y. Electronic and geometric structure of La@xaC82 and C82: Theory and experiment. Phys. Rev. B. 1994. 49(24): 17403. https://doi.org/10.1103/PhysRevB.49.17403
19. Pichler T., Knupfer M., Golden M.S., Böske T., Fink J., Kirbach U., Kuran P., Dunsch L., Jung C. The metallofullerene Tm@C82: isomer-selective electronic structure. Appl. Phys. A. 1998. 66: 281. https://doi.org/10.1007/s003390050667
20. Eletskii A.V., Smirnov B.M. Fullerenes. Phys. Usp. 1993. 36(3): 202. https://doi.org/10.1070/PU1993v036n03ABEH002129
21. Eletskii A.V., Smirnov B.M. Fullerenes and carbon structures. Phys. Usp. 1995. 38: 935. https://doi.org/10.1070/PU1995v038n09ABEH000103
22. John T., Dennis S., Shinohara H. Production, isolation, and characterization of group-2 metal-containing endohedral metallofullerenes. Appl. Phys. A. 1998. 66(3): 243. https://doi.org/10.1007/s003390050662
23. Dennis T.J.S., Kai T., Tomiyama T., Shinohara H. Isolation and characterisation of the two major isomers of [84]fullerene (C84). Chem. Commun. 1998. 5: 619. https://doi.org/10.1039/a708025e
24. Weaver J.H., Chai Y., Kroll G.H., Jin C., Ohno T.R., Haufler R.E., Guo T., Alford J.M., Conceicao J., Chibante L.P.F., Jain, A. XPS probes of carbon-caged metals. Chem. Phys. Lett. 1992. 190(5): 460. https://doi.org/10.1016/0009-2614(92)85173-8
25. Ding J., Yang S. Isolation and characterization of Pr@C82 and Pr2@C80. J. Am. Chem. Soc. 1996. 118(45): 11254. https://doi.org/10.1021/ja961601m
26. Ding J., Lin N., Weng L.T., Cue N., Yang S. Isolation and characterization of a new metallofullerene Nd@C82. Chem. Phys. Lett. 1996. 261(1-2): 92. https://doi.org/10.1016/0009-2614(96)00879-2
27. Shinohara H., Takata M., Sakata M., Hashizume T., Sakurai T. Metallofullerenes: their formation and characterization. Mater. Sci. Forum. 1996. 232: 207. https://doi.org/10.4028/www.scientific.net/MSF.232.207
28. Hoinkis M., Yannoni C.S., Bethune D.S., Salem J.R., Johnson R.D., Crowder M.S., De Vries M.S. Multiple species of La@C82 and Y@C82, mass spectrometric and solution EPR studies. Chem. Phys. Lett. 1992. 198(5): 461. https://doi.org/10.1016/0009-2614(92)80028-A
29. Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Solubility is provided in metal, interhallides, fullerites. (Dnepropetrovsk: Science and Education, 2006). [in Russian].
30. Zaginaichenko S.Y., Schur D.V., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9
31. Anikina N.S., Schur D.V., Zaginaichenko S.Y., Zolotarenko A.D. The role of chemical and physical properties of C60 fullerene molecules and benzene derivatives in processes of C60 dissolving. In: Hydrogen Science and Chemistry of Carbon Nanomaterials. 10th Int. Conf. (Sudak, Crimea, Ukraine, 2007). P. 680-681.
32. Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Experimental evaluation of total hydrogen capacity for fullerite C60. Int. J. Hydrogen Energy. 2011. 36(1): 1143. https://doi.org/10.1016/j.ijhydene.2010.06.087
33. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu. Method for synthesis of carbon nanotubes in the liquid phase. In: International Carbon Providence Conference American Carbon Society. Extended Abstracts. (Rhode, Island, USA, 2004). P. 196-198. https://doi.org/10.1007/1-4020-2669-2_14
34. Schur D.V., Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. In: Features of the formation of the C60 molecule. Carbon nanomaterials in hydrogen systems of clean energy. (Springer, 2008).
35. Anikina N.S., Schur D.V., Zaginaichenko S.Y., Zolotarenko A.D. On the donor-acceptor mechanism of C60 fullerene dissolving in aromatic hydrocarbons. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 10th Int. Conf. (Sudak, Crimea, Ukraine, 2007). P. 676-679.
36. Ratajczak H., Orville-Thomas W.J. Molecular interactions. V. 2. (Chichester, New York, Brisbane, Toronto: A Wiley-Interscience Publication, 1981). [in Russian].
37. Andrews L.J, Keefer R.M. Molecular complexes in organic chemistry. (San Francisco, London, Amsterdam: Holden-Day, Inc., 1964). [in Russian].
38. Gutmann V. Coordination Chemistry in Non-Aqueous Solutions. (Wien, New York: Springer - Verlag, 1968). [in Russian]. https://doi.org/10.1007/978-3-7091-8194-2
DOI: https://doi.org/10.15407/hftp11.03.429
Copyright (©) 2020 N. Y. Akhanova, D. V. Schur, N. A. Gavrylyuk, M. T. Gabdullin, N. S. Anikina, An. D. Zolotarenko, O. Ya. Krivushchenko, Ol. D. Zolotarenko, B. M. Gorelov, E. Erlanuli, D. G. Batrishev
This work is licensed under a Creative Commons Attribution 4.0 International License.