Chemistry, Physics and Technology of Surface, 2020, 11 (4), 528-538.

Magnetically sensitive nanocomposites for targeted antitumor therapy with application of gemcitabine



DOI: https://doi.org/10.15407/hftp11.04.528

N. M. Korniichuk, S. P. Turanska, A. L. Petranovska, M. V. Abramov, P. P. Gorbyk, N. Yu. Luk'yanova, N. V. Kusyak, V. F. Chekhun

Abstract


The aim of the work is synthesis and study on the properties of polyfunctional magnetosensitive nanocomposites (NC) and target-directed magnetic fluids (MF) based on physiological solution (PS), magnetite, gemcitabine (GEM) and HER2 antibodies (AB), promising for use in targeted antitumor therapy against MDA-MB-231 aggressive tumor cells of triple-negative human breast cancer (BC) with high proliferative and metastatic activity.

The specific surface area (Ssp) of samples was determined by the method of thermal desorption of nitrogen using a device KELVIN 1042 of “COSTECH Instruments”. The size of nanoparticles (NP) has been estimated by the formula DBET = 6/(ρSBET), where ρ is the density of NC particle, SBET is the value of the specific surface area calculated by the polymolecular adsorption theory of Brunauer, Emmett and Teller (BET). The surface condition of nanodispersed samples was studied by IR spectroscopy (“Perkin Elmer” Fourier spectrometer, a model 1720X). To calculate the concentration of hydroxyl groups on the surface of nanostructures, the method of differential thermal analysis was used in combination with differential thermogravimetric analysis. The thermograms were recorded using a derivatograph Q-1500D of MOM firm (Hungary) in the temperature range of 20–1000 °C at a heating rate of 10 deg/min. X-ray phase analysis of nanostructures was performed using a diffractometer DRON-4-07 (CuKα radiation with a nickel filter in a reflected beam, the Bragg-Brentano focusing). The size and shape of NP were determined by electron microscopy (a transmission electron microscope (TEM) JEM-2100F (Japan)). The hysteresis loops of the magnetic moment of the samples were measured using a laboratory vibration magnetometer of Foner type at room temperature. Measurement of optical density, absorption spectra and GEM concentration in solutions was performed by spectrophotometric analysis (Spectrometer Lambda 35 UV/Vis Perkin Elmer Instruments). The amount of adsorbed substance on the surface of magnetite was determined using a spectrophotometer at λ = 268 nm from a calibration graph. The thickness of the adsorbed layer of GEM in the composition of Fe3O4@GEM NC was determined by magnetic granulometry. To study the direct cytotoxic/cytostatic effect of a series of experimental samples of MF based on PS, Fe3O4 NP, GEM, HER2 AB, as well as MF components in mono- or complex use, onto MDA-MB-231 cells in vitro, IC50 index was determined.

MF were synthesized on the basis of single-domain Fe3O4 and PS, stabilized with sodium oleate (Ol.Na) and polyethylene glycol (PEG), containing GEM and HER2 (Fe3O4@GEM/Ol.Na/PEG/HER2+PS). The cytotoxic/cytostatic activity of MF against MDA-MB-231 cells was studied. It was found that as a result of application of synthesized MF composed of Fe3O4@GEM/Ol.Na/PEG/HER2+PS at the concentration of magnetite of 0.05 mg/mL, GEM - 0.004 mg/mL and HER2 AB - 0.013 μg/mL, a synergistic effect arose, with reduction of the amount of viable BC cells to 51 %. It has been proved that when using MF based on targeted Fe3O4/GEM/HER2 complex, the increased antitumor efficacy is observed compared to traditional use of the drug GEM, with a significant reduction (by four times) of its dose. The high cytotoxic/cytostatic activity of Fe3O4/GEM/HER2 complexes is explained by the fact that endogenous iron metabolism disorders play a significant role in the mechanisms of realization of the apoptotic program under the influence of nanocomposite. Thus, when the nanocomposite system contains Fe3O4/GEM/HER2 complexes in MDA-MB-231 cells, a significant increase is observed in the level of “free iron”, which favours formation of reactive oxygen species and causes oxidative stress (Fenton reaction). The consequences of oxidative stress are induction of apoptosis, enhancement of lipid peroxidation processes, as well as structural and functional rearrangement of biological membranes. The prospects have been shown of further studies of Fe3O4@GEM/Ol.Na/PEG/HER2+PS MF in order to create on their basis a magnetically carried remedy for use in targeted antitumor therapy.


Keywords


gemcitabine; nanosized single-domain magnetite; core-shell nanocomposites; magnetic fluids; HER2 antibody; targeted antitumor therapy

Full Text:

PDF

References


1. Plentz R.R., Malek N.P. Systemic therapy of cholangiocarcinoma. Visc. Med. 2016. 32(6): 427. https://doi.org/10.1159/000453084

2. Jain A., Kwong L.N., Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Curr. Treat. Options Oncol. 2016. 17(11): 58. https://doi.org/10.1007/s11864-016-0432-2

3. Internet resource. Gemcitabine. Recent clinical trials of II and III stages in metastatic pancreatic cancer. 2017. [in Russian]. https://www.meir-health.ru

4. Gutorov S.L. Gemcitabine and pemetrexed: recent results in chemotherapy of solid tumors. Farmateka. 2005. 21: 16. [in Russian].

5. Arias J.L., Reddy L.H., Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 2012. 22(15): 7622. https://doi.org/10.1039/c2jm15339d

6. Popescu R.C., Andronescu E., Vasile B.S., Truscă R., Boldeiu A., Mogoantă L., Mogosanu G.D., Temelie M., Radu M., Grumezescu A.M., Savu D. Fabrication and cytotoxicity of gemcitabine-functionalized magnetite nanoparticles. Molecules. 2017. 22(7): 1080. https://doi.org/10.3390/molecules22071080

7. Iglesias G.R., Reyes-Ortega F., Checa Fernandez B.L., Delgado Á.V. Hyperthermia-triggered gemcitabine release from polymer-coated magnetite nanoparticles. Polymers. 2018. 10(3): 269. https://doi.org/10.3390/polym10030269

8. Petranovska A.L., Abramov M.V., Opanashchuk N.M., Turanska S.P., Kusyak N.V., Gorbyk P.P. Synthesis and properties of magnetically sensitive nanocomposites based on magnetite and gemcitabine. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 353. https://doi.org/10.15407/hftp09.04.353

9. Petranovska A.L., Abramov M.V., Opanashchuk N.M., Turanska S.P., Gorbyk P.P., Kusyak N.V., Kusyak A.P., Lukyanova N.Yu., Chekhun V.F. Magnetically sensitive nanocomposites and magnetic liquids based on magnetite, gemcitabine, and antibody Her2. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 419.

10. Gorbyk P.P. Medico-biological nanocomposites with nanorobot functions: state of investigations, development, and prospects of practical introduction. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 128. [in Ukrainian]. https://doi.org/10.15407/hftp11.01.128

11. Abramov M.V., Petranovska A.L., Kusyak N.V., Kusyak A.P., Opanashchuk N.M., Turanska S.P., Gorbyk P.P., Luk'yanova N.Yu., Chekhun V.F. Synthesis and properties of magnetosensitive nanocomposites and ferrofluids based on magnetite, gemcitabine and HER2 antibody. Funct. Mater. 2020. 27(2): 1. https://doi.org/10.15407/fm27.02.283

12. Levy L., Sahoo Y., Earl B.J. Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002. 14: 3715. https://doi.org/10.1021/cm0203013

13. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. (Nederlands: Springer, 2009). https://doi.org/10.1007/978-90-481-2309-4

14. Gorbyk P.P., Turov V.V. Nanomaterials and Nanocomposites in Medicine, Biology, Ecology. (Kyiv: Naukova Dumka, 2011). [in Russian].

15. Patent UA 99211. Gorbyk P.P., Petranovska A.L., Turelyk M.P., Turanska S.P., Vasylieva O.A., Chekhun V.F., Luk'yanova N.Yu., Shpak A.P., Korduban O.M. Nanocapsule with nanorobot functions. 2012.

16. Gorbyk P.P., Chekhun V.F. Nanocomposites of medicobiologic destination: reality and perspectives for oncology. Funct. Mater. 2012. 19(2): 145.

17. Gorbyk P.P. Nanocomposites with functions of medico-biological nanorobots: synthesis, properties, application. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(2): 323. [in Ukrainian].

18. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive Nanocomposites with Functions of Medico-Biological Nanorobots: Synthesis and Properties. In: Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. (NY: Nova Science Publishers, 2014).

19. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P., Pylypchuk I.V. Magnetosensitive Nanocomposites with Hierarchical Nanoarchitecture as Biomedical Nanorobots: Synthesis, Properties, and Application. In: Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. (Elsevier, 2016). https://doi.org/10.1016/B978-0-323-41533-0.00010-6

20. Pylypchuk I.V., Abramov M.V., Petranovska A.L., Turanska S.P., Budnyak T.M., Kusyak N.V., Gorbyk P.P. Multifunctional magnetic nanocomposites on the base of magnetite and hydroxyapatite for oncology applications. In: Nanochemistry, Biotechnology, Nanomaterials, and Their Applications (NANO 2017). Selected Proc. 5th Int. Conf. "Nanotechnology and Nanomaterials" (Aug. 23-26, 2017, Chernivtsi, Ukraine). P. 35. https://doi.org/10.1007/978-3-319-92567-7_2

21. Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Magnetosensitive Nanocomposites Based on Cisplatin and Doxorubicin for Application in Oncology. In: Horizons in World Physics. (Nova Publishers, 2017). 293: 1.

22. Uvarova I.V., Gorbyk P.P., Gorobets' S.V., Ivashchenko O.A., Ulianchenko N.V. Nanomaterials of Medical Destination. (Kyiv: Naukova Dumka, 2014). [in Ukrainian].

23. Gorobets' S.V., Gorobets' O.Yu., Gorbyk P.P., Uvarova I.V. Functional Bio- and Nanomaterials of Medical Destination. (Kyiv: Kondor, 2018). [in Ukrainian].

24. Kusyak A.P., Petranovska A.L., Gorbyk P.P. Adsorption of Pb2+ cations from blood plasma by nanocomposites based on magnetite. Surface. 2016. 8(23): 179. [in Ukrainian]. https://doi.org/10.15407/Surface.2016.08.179

25. Abramov M.V., Turanska S.P., Gorbyk P.P. Magnetic properties of nanocomposites of superparamagnetic core-shell type. Metalofizyka i Novitni Tekhnologiyi. 2018. 40(4): 423. [in Ukrainian]. https://doi.org/10.15407/mfint.40.04.0423

26. Abramov M.V., Turanska S.P., Gorbyk P.P. Magnetic properties of fluids based on polyfunctional nanocomposites of superparamagnetic core-multilevel shell type. Metalofizyka i Novitni Tekhnologiyi. 2018. 40(10): 1283. [in Ukrainian]. https://doi.org/10.15407/mfint.40.10.1283

27. Karaman O.M., Fedosova N.I., Voyeikova I.M., Cheremshenko N.L., Ivanchenko A.V., Savtsova Z.D. Prospects of application of lectins for diagnostics and treatment of malignant neoplasms. Onkologiya. 2018. 20(1): 10. [in Ukrainian].

28. Turanska S.P., Opanashchuk N.M., Petranovska A.L., Kusyak N.V., Tarasiuk B.I., Gorobets' S.V., Turov V.V., Gorbyk P.P., Abramov M.V. Synthesis, properties of nanocomposites based on gemcitabine, and application in oncotherapy. Poverkhnia'. 2019. 11(26): 577. [in Ukrainian]. https://doi.org/10.15407/Surface.2019.11.577

29. Moiseenko V.M. Probabilities of monoclonal antibodies in treatment of malignant tumors. Practical Oncology. 2002. 3(4): 253. [in Russian].

30. Tan M., Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv. Exp. Med. Biol. 2007. 608: 119. https://doi.org/10.1007/978-0-387-74039-3_9

31. Santin A.D., Bellone S., Roman J.J., McKenney J.K., Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int. J. Gynaecol. Obstet. 2008. 102(2): 128. https://doi.org/10.1016/j.ijgo.2008.04.008

32. Borisenko N.V., Bogatyrev V.M., Dubrovin I.V., Abramov N.V., Gayevaya M.V., Gorbyk P.P. Synthesis and Properties of Magnetosensitive Nanocomposites Based on Oxides of Iron and Silicon. In: Physics and Chemistry of Nanomaterials and Supramolecular Structures. (Kyiv: Naukova Dumka, 2007). 1: 394. [in Russian].

33. Mornet S., Vasseur S., Grasset F., Veverka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 2006. 34(2-4): 237. https://doi.org/10.1016/j.progsolidstchem.2005.11.010

34. Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5: 275. https://doi.org/10.1007/s40097-015-0159-9

35. Abramov N.V., Turanska S.P., Kusyak A.P., Petranovska A.L., Gorbyk P.P. Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic fluids based on them. J. Nanostruct. Chem. 2016. 6: 223. https://doi.org/10.1007/s40097-016-0196-z

36. Freshni R.Ya. Animal Cell Culture: Practical Manual. (Moscow: BINOM, Laboratoriya znania, 2010). [in Russian]. https://doi.org/10.1002/9780470649367

37. Luk'yanova N.Yu. Doctoral (Biol.) Thesis. (Kyiv, 2015). [in Ukrainian].




DOI: https://doi.org/10.15407/hftp11.04.528

Copyright (©) 2020 N. M. Korniichuk, S. P. Turanska, A. L. Petranovska, M. V. Abramov, P. P. Gorbyk, N. Yu. Luk'yanova, N. V. Kusyak, V. F. Chekhun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.