Chemistry, Physics and Technology of Surface, 2021, 12 (1), 3-8.

Charge distribution functions for characterization of complex systems



DOI: https://doi.org/10.15407/hftp12.01.003

V. M. Gun’ko

Abstract


A set of characteristics calculated within the scope of quantum chemistry methods may be assigned to local ones changing from atom to atom in complex systems. Simple averaging of the related values gives rather poor characteristics of the systems because various fractions of certain atoms can have different surrounding and, therefore, different characteristics, which may not correspond to the average one. The aim of this study is searching a more appropriate pathway to transform local characteristics, e.g., atomic charges, into nonlocal ones based on the distribution functions. The distribution functions of atomic charges (CDF) could be considered as a simple tool to analyze nonuniform complex systems since specificity of different fractions of atoms reflects in the CDF shape. As a whole, the approach accuracy and efficiency depend on the quality and appropriateness of molecular and cluster models used, as well as on the quantum chemical methods (ab initio, DFT, and semiempirical) and the basis sets used. Nanosystems with dozens of molecules (clusters, domains, nanodroplets), modelling a liquid phase or interfacial layers, and solid nanoparticles of almost real sizes (> 40 units, > 2 nm) may be considered as more appropriate models of real systems than the models with several molecules and small clusters (< 20 units, < 1 nm). This approach has been applied to a set of representatives of such various materials as activated carbon, porous and nanoparticulate silicas unmodified and modified interacting with nitrogen, methane, water, human serum albumin (HSA) binding doxorubicin molecules. This approach may give information useful upon the analysis of any complex system.


Keywords


atomic charges; distribution functions; DFT method; semiempirical method

Full Text:

PDF

References


1. Weinhold F., Landis C.R. Discovering Chemistry with Natural Bond Orbitals. (New York: John Wiley & Sons. 2012). https://doi.org/10.1002/9781118229101

2. Helgaker T., Jorgensen P., Olsen J. Molecular Electronic Structure Theory. (New York: John Wiley & Sons, 2014).

3. Barone V. Computational Strategies for Spectroscopy: from Small Molecules to Nano Systems. (New York: John Wiley & Sons, 2011). https://doi.org/10.1002/9781118008720

4. Martin R.M., Reining L., Ceperley D.M. Interacting Electrons: Theory and Computational Approaches. (UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139050807

5. Engel E., Dreizler R.M. Density Functional Theory: An Advanced Course. (Springer, 2013).

6. Bruneval F. Assessment of the linearized GW density matrix for molecules. J. Chem. Theory Comput. 2019. 15(7): 4069. https://doi.org/10.1021/acs.jctc.9b00333

7. Li J., D'Avino G., Duchemin I., Beljonne D., Blase X. Combining the many-body GW formalism with classical polarizable models: Insights on the electronic structure of molecular solids. J. Phys. Chem. Lett. 2016. 7(14): 2814. https://doi.org/10.1021/acs.jpclett.6b01302

8. Sethio D., Raggi G., Lindh R., Erdélyi M. Halogen bond of halonium ions: benchmarking DFT methods for the description of NMR chemical shifts. J. Chem. Theory Comput. 2020. 16(12): 7690. https://doi.org/10.1021/acs.jctc.0c00860

9. Grimme S., Bannwarth C., Shushkov P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1-86). J. Chem. Theory Comput. 2017. 13(5): 1989. https://doi.org/10.1021/acs.jctc.7b00118

10. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

11. Gun'ko V.M. Modeling of interfacial behavior of water and organics. J. Theor. Comput. Chem. 2013. 12(07): 1350059. https://doi.org/10.1142/S0219633613500594

12. Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413

13. Gun'ko V.M. Effects of methods and basis sets on calculation results using various solvation models. Him. Fiz. Tehnol. Poverhni. 2018. 9(1): 3. https://doi.org/10.15407/hftp09.01.003

14. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.01. (Gaussian, Inc. Wallingford CT, 2013).

15. Barca G.M.J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S., Li H., Li W., Lutz J.J., Magoulas I., Mato J., Mironov V., Nakata H., Pham B.Q., Piecuch P., Poole D., Pruitt S.R., Rendell A.P., Roskop L.B., Ruedenberg K. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152: 154102. https://doi.org/10.1063/5.0005188

16. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n

17. Yang K., Zheng J., Zhao Y., Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010. 132(16): 164117. https://doi.org/10.1063/1.3382342

18. Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014. 140(18): 18A301. https://doi.org/10.1063/1.4869598

19. Stewart J.J.P. MOPAC2016. Stewart Computational Chemistry, web: HTTP://OpenMOPAC.net. January 5, 2021.

20. Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Mod. 2013. 19(1): 1. https://doi.org/10.1007/s00894-012-1667-x

21. Gun'ko V.M. Dynamics of chemical bonds and local density of electron states at heterogeneous surfaces. Colloids Surf. A: Physicochem. Eng. Aspects. 1995. 101(2-3): 279. https://doi.org/10.1016/0927-7757(95)03188-J

22. Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.B., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. J. Colloid Interface Sci. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065




DOI: https://doi.org/10.15407/hftp12.01.003

Copyright (©) 2021

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.