1D and 2D polaritons in macroporous silicon structures with nano-coatings
DOI: https://doi.org/10.15407/hftp12.01.009
Abstract
In this paper, we used high-resolution IR absorption spectra to investigate 1D and 2D polaritons in periodical 2D macroporous silicon structures with nano-coatings of SiO2 and CdS, ZnO nanoparticles. The application of high-resolution IR absorption spectroscopy resulted in detection of dipole-active TO vibrations, photon splitting and giant two-polar absorption oscillations with amplitudes of ±107arb.un. As a result, the dispersion law in yz surfaces of macropores change to z direction along macropores. It means additional degree of freedom as vertically polarized light in z direction and horizontally polarized light in x direction resulted in beams splitting and two-photon interference - Hong-Ou-Mandel effect. In our case, 2D resonances of Wannier-Stark electro-optical effect in yz plane correspond to constructive interference of the two-photon states (bosonic behavior), and two-polar resonances in ±z direction are determined by destructive interference of the two-photon states (fermionic behavior). Two-polar oscillations of 1D -polaritons have the ultra-small half-width 0.4–0.6 сm–1 and minimal Rabi frequency of samples 1.0 сm–1 equaled to the resolution of spectral measurements. Furthermore, two-photon interference and 1D polaritons are perspective for high-coherent optical quantum computers on macroporous silicon with nano-coatings and, in addition, for lasers and new metamaterials.
Keywords
References
1. Karachevtseva L., Kuchmii S., Lytvynenko O., Sizov F., Stronska O., Stroyuk A. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Appl. Surf. Sci. 2011. 257(8): 3331. https://doi.org/10.1016/j.apsusc.2010.11.016
2. Karachevtseva L.A. Coherent oscillations in IR spectra of 2D macroporous silicon structures with surface nanocoatings. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 115. https://doi.org/10.15407/hftp11.01.115
3. Karachevtseva L.A., Litvinenko O.A., Stronskaya E.I. Influence of Electrochemical parameters on the etching of macropores in silicon. Theor. Exp. Chem. 2003. 39: 385. https://doi.org/10.1023/B:THEC.0000013993.88442.0e
4. Birner A., Wehrspohn R.B., Gösele U.M., Busch K. Silicon-based photonic crystals. Adv. Mater. 2001. 13(6): 377. https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X
5. Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semiconductor Physics Quantum Electronics and Optoelectronics. 2004. 7(4): 430. https://doi.org/10.15407/spqeo7.04.430
6. Karachevtseva L.A., Karas' N.I., Onischenko V.F., Sizov F.F. Surface polaritons in 2D macroporous silicon structures. Int. J. Nanotechnology. 2006. 3(1): 76. https://doi.org/10.1504/IJNT.2006.008722
7. Karachevtseva L.A., Glushko A.E., Ivanov V.I., Lytvynenko O.O., Onishchenko V.F., Parshin K.A., Stronska O.J. Out-of-plane optical transmittance of 2D photonic macroporous silicon structures. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2007. 10(2): 51.
8. Glushko A., Karachevtseva L. Photonic band structure of oxidized macroporous silicon. Opto-Electron. Rev. 2006. 14: 201. https://doi.org/10.2478/s11772-006-0026-9
9. Glushko A., Karachevtseva L. PBG properties of three-component 2D photonic crystals. Photonics Nanostruct. Fundam. Appl. 2006. 4(3):141. https://doi.org/10.1016/j.photonics.2006.02.003
10. Holiney R.Yu., Matveeva L.A., Venger E.F., Karachevtseva L.A., Lytvynenko O.A. Electroreflectance study of macroporous silicon surfaces. Appl. Surf. Sci. 2001. 172(3-4): 214. https://doi.org/10.1016/S0169-4332(00)00861-8
11. Karachevtseva L.A., Ivanov V.I., Lytvynenko O.O., Parshin K.A., Stronska O.J. The impurity Franz-Keldysh effect in 2D photonic macroporous silicon structures. Appl. Surf. Sci. 2008. 255(5): 332. https://doi.org/10.1016/j.apsusc.2008.09.038
12. Patent UA 136455. Karachevtseva L. Method for Manufacturing of Optical Quantum Computer. 2019.
13. Lehman V. The physics of macropore formation in low doped n-type silicon. J. Electrochem. Soc. 1993. 140(10): 2836. https://doi.org/10.1149/1.2220919
14. Karachevtseva L.A., Litvinenko O.A., Malovichko E.A. Stabilization of electrochemical formation of macropores in n-Si. Theor. Exp. Chem. 1998. 34: 287. https://doi.org/10.1007/BF02523264
15. Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo Wang, Bratus V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Appl. Surf. Sci. 2018. 434: 142. https://doi.org/10.1016/j.apsusc.2017.10.029
16. Mao J., Yao J.-N., Wang L.-N., Liu W.-S. Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier. J. Colloid Interface Sci. 2008. 319(1): 353. https://doi.org/10.1016/j.jcis.2007.10.027
17. Stroyuk A.L., Shvalagin V.V., Kuchmii S.Ya. Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles. J. Photochem. Photobiol. A. 2005. 173(2): 185. https://doi.org/10.1016/j.jphotochem.2005.02.002
18. Karachevtseva L., Kuchmii S., Stroyuk A., Sapelnikova O., Lytvynenko O., Stronska O., Bo Wang, Kartel M. Light-emitting structures of CdS nanocrystals in oxidized macroporous silicon. Appl. Surf. Sci. 2016. 388: 288. https://doi.org/10.1016/j.apsusc.2016.01.069
19. Gerardi G.J., Poindexter E.H., Caplan P.J., Jonhson N.M. Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 1986. 49(6): 348. https://doi.org/10.1063/1.97611
20. Vinogradov E.A. Semiconductor microcavity polaritons. Physics-Uspekhi. 2002. 45(12): 1213. https://doi.org/10.1070/PU2002v045n12ABEH001189
21. Vinogradov E.A., Zhizhin G.N., Yakovlev V.A. Resonance between dipole oscillations of atoms and interference modes in crystalline films. J. Exp. Theor. Phys. 1979. 50: 486.
22. Berezhkovskii A.M., Ovchinnikov A.A. Influence of impurities on the Wannier-Stark ladder in semiconductor in a strong electric field. Phys. Stat. Sol. (b). 1982. 110: 455. https://doi.org/10.1002/pssb.2221100210
23. Ou Z., Hong C., Mandel L. Relation between input and output states for a beam splitter. Opt. Commun. 1987. 63(2): 118. https://doi.org/10.1016/0030-4018(87)90271-9
24. Heeres R.W., Kouwenhoven L.P., Zwiller V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 2013. 8: 719. https://doi.org/10.1038/nnano.2013.150
DOI: https://doi.org/10.15407/hftp12.01.009
Copyright (©) 2021 L. A. Karachevtseva, M. T. Kartel, O. O. Lytvynenko
This work is licensed under a Creative Commons Attribution 4.0 International License.