Sorption of U(VI) compounds on inorganic composites containing partially unzipped multiwalled carbon nanotubes
DOI: https://doi.org/10.15407/hftp12.01.018
Abstract
Unlike ion-exchange resins, inorganic sorbents possess high selectivity towards heavy metal ions and stability against ionizing radiation. However, sorption on these materials is rather slow. Moreover, sorption capacity strongly depends on the solution pH. In order to improve sorption properties of inorganic ion-exchangers, composites containing advanced carbon materials are obtained. Regularities of sorption of U(VI) compounds from low-concentrated aqueous solutions (up to 0.1 mmol dm–3 of uranium) on hydrated zirconium dioxide and zirconium hydrophosphate are considered. The sorbents were modified with partially unzipped multiwalled carbon nanotubes (PUMWCNTs). Sorption isotherms were obtained and analyzed. They obey Dubinin-Radushkevich model indicating sorption sites, a size of which is comparable with that of ions being sorbed. As found, the sorption mechanism is ion exchange. The effect of the solution pH on the sorption rate of U(VI) ions and capacity of inorganic ion-exchangers and their composites has been considered. Carbon additions increase sorption capacity of zirconium dioxide and zirconium hydrophosphate, when the initial pH of one-component solution is 3–4 and 5–7 respectively. Under these conditions, U(VI)-containing cations are removed from the solution practically completely. The rate of sorption obeys the model of chemical reaction of pseudo-second order, when uranium is removed from one-component solution. PUMWCNTs slow down sorption on zirconium dioxide and accelerate it on zirconium hydrophosphate. The dependence of the pseudo second order equation constants on the pH of U(VI) solutions was analyzed. The reaction of the first order occurs, when the solution contains also Ca2+ and Mg2+ ions. Regeneration was carried out using HNO3 and NaHCO3 solutions: the rate-determining stage of desorption is particle diffusion. It has been shown that one-component ZHP can be regenerated with a NaHCO3 solution practically completely. The most suitable solution for U(VI) desorption from ZHP-PUMWCNTs composite is a 1 M HNO3 solution.
Keywords
References
1. Hoover J., Gonzales M., Shuey C., Barney Y., Lewis J. Elevated arsenic and uranium concentrations in unregulated water sources on the navajo nation, USA. Exposure Health. 2017. 9(2): 113. https://doi.org/10.1007/s12403-016-0226-6
2. Bjørklund G., Semenova Yu., Pivina L., Dadar M., Rahman M., Aaseth J., Chirumbolo S. Uranium in drinking water: a public health threat. Arch. Toxicol. 2020. 94(5): 1551. https://doi.org/10.1007/s00204-020-02676-8
3. Hakonson-Hayes A.C., Fresquez P., Whicker F. Assessing potential risks from exposure to natural uranium in well water. J. Environ. Radioact. 2002. 59(1): 29. https://doi.org/10.1016/S0265-931X(01)00034-0
4. Bhalara P.D., Punetha D., Balasubramanian K. A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J. Environ. Chem. Eng. 2014. 2(3): 1621. https://doi.org/10.1016/j.jece.2014.06.007
5. Basu H., Pimple M.V., Saha S., Patel A., Dansena C., Singhal R.K. TiO2 microsphere impregnated alginate: a novel hybrid sorbent for uranium removal from aquatic bodies. New J. Chem. 2020. 44(10): 3950. https://doi.org/10.1039/C9NJ06006E
6. Saha S., Basu H., Rout S., Pimple M.V., Signal R.K. Nano-hydroxyapatite coated activated carbon impregnated alginate: A new hybrid sorbent for uranium removal from potable water. J. Environ. Chem. Eng. 2020. 8(4): 103999. https://doi.org/10.1016/j.jece.2020.103999
7. Galhoum A.A., Eisa W.H., IbrahimEl-Tantawy El-Sayed I.E.T., Tolba A.A., Shalaby Z.M., Mohamady S.A., Muhammad S.S., Hussien S.S., Akashi T., Guiba E. A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite - Application to uranium sorption from ore leachate. Environ. Pollut. 2020. 264: 114797. https://doi.org/10.1016/j.envpol.2020.114797
8. Youssef W.M., Sheikh A.S.E., Ahmed S.H., Morsy A. Polyacrylic acid/polyaniline composite as efficient adsorbent for uranium extraction from nuclear industrial effluent. J. Radioanal. Nucl. Chem. 2020. 324: 87. https://doi.org/10.1007/s10967-020-07060-5
9. Shelar-Lohar G., Joshi S. Comparative study of uranium and thorium metal ion adsorption by gum ghatti grafted poly(acrylamide) copolymer composites. RSC Adv. 2019. 9(70): 41326. https://doi.org/10.1039/C9RA08212C
10. Moghaddam R.H., Dadfarnia S., Shabani A.M.H., Tavakol M. Synthesis of composite hydrogel of glutamic acid, gum tragacanth, and anionic polyacrylamide by electron beam irradiation for uranium(VI) removal from aqueous samples: Equilibrium, kinetics, and thermodynamic studies. Carbohydr. Polym. 2019. 206: 352. https://doi.org/10.1016/j.carbpol.2018.10.030
11. Liu J., Zhao C., Yuan G., Dong Y., Yang J., Li F., Liao J., Yang Y., Liu N. Adsorption of U(VI) on a chitosan/polyaniline composite in the presence of Ca/Mg-U(VI)-CO3 complexes. Hydrometallurgy. 2018. 175: 300. https://doi.org/10.1016/j.hydromet.2017.12.013
12. Pan D., Fan Q., Fan F., Tang Y., Zhang Y., Wu W. Removal of uranium contaminant from aqueous solution by chitosan@attapulgite composite. Sep. Purif. Technol. 2017. 177: 86. https://doi.org/10.1016/j.seppur.2016.12.026
13. Haggag E.S.A., Abdelsamad A.A., Masoud A.M. Potentiality of uranium extraction from acidic leach liquor by polyacrylamide-acrylic acid titanium silicate composite adsorbent. Int. J. Environ. Anal. Chem. 2020. 100(2): 204. https://doi.org/10.1080/03067319.2019.1636037
14. Dzyazko Yu.S., Perlova O.V., Perlova N.A., Volfkovich Yu.M., Sosenkin V.E., Trachevskii V.V., Sazonova V.F., Palchik A.V. Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations. Desalin. Water Treat. 2017. 69: 142. https://doi.org/10.5004/dwt.2017.0686
15. Perlova N., Dzyazko Y., Perlova O., Palchik A., Sazonova V. Formation of Zirconium Hydrophosphate Nanoparticles and Their Effect on Sorption of Uranyl Cations. Nanoscale Res. Lett. 2017. 12: 209. https://doi.org/10.1186/s11671-017-1987-y
16. Perlova O., Dzyazko Yu., Halutska I., Perlova N., Palchik A. Anion exchange resin modified with nanoparticles of hydrated zirconium dioxide for sorption of soluble U(VI) compounds. Springer Proc. Phys. 2018. 210: 3. https://doi.org/10.1007/978-3-319-91083-3_1
17. Li Z., Chen F., Yuan L., Liu Y., Zhao Y., Chai Z., Shi W. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem. Eng. J. 2012. 210: 539. https://doi.org/10.1016/j.cej.2012.09.030
18. Wang C.L., Li Y., Liu C.L. Sorption of uranium from aqueous solutions with graphene oxide. J. Radioanal. Nucl. Chem. 2015. 304(3): 1017. https://doi.org/10.1007/s10967-014-3855-x
19. Zhao G.X., Wen T., Yang X., Yang S.B., Liao J.L., Hu J., Shao D.D., Wang X.K. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 2012. 41(20): 6182. https://doi.org/10.1039/C2DT00054G
20. Sun Y., Yang S., Sheng G., Guo Z., Wang X. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Environ. Radioact. 2012. 105: 40. https://doi.org/10.1016/j.jenvrad.2011.10.009
21. Wang Y., Wang Z., Gu Z., Yang J., Liao J., Yang Y., Liu N. Tang J. Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes. J. Radioanal. Nucl. Chem. 2015. 304: 1329. https://doi.org/10.1007/s10967-015-3981-0
22. Gu Z., Wang Y., Tang J., Yang J., Liao J., Yang Y., Liu N. The removal of uranium(VI) from aqueous solution by graphene oxide-carbon nanotubes hybrid aerogels. J. Radioanal. Nucl. Chem. 2015. 303: 1835. https://doi.org/10.1007/s10967-014-3795-5
23. Li S., Yang P., Liu X., Zhang J., Xie W., Wang C. Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. J. Mater. Chem. A. 2019. 7(28): 16902. https://doi.org/10.1039/C9TA04562G
24. Song S., Wang K., Zhang Y., Wang Y., Zhang C., Wang X., Zhang R., Chen J., Wen T., Wang X. Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater. Environ. Pollut. 2019. 250: 196. https://doi.org/10.1016/j.envpol.2019.04.020
25. Liu H., Zhou Y., Yang Y., Zou K., Wu R., Xia K., Xie S. Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution. Appl. Surf. Sci. 2019. 471: 88. https://doi.org/10.1016/j.apsusc.2018.11.231
26. Peng W., Huang G., Yang S., Guo C., Shi J. Performance of biopolymer/graphene oxide gels for the effective adsorption of U (VI) from aqueous solution. J. Radioanal. Nucl. Chem. 2019. 322: 861. https://doi.org/10.1007/s10967-019-06727-y
27. Radhakrishnan A., Nahi J., Beena B. Synthesis and characterization of multi-carboxyl functionalized nanocellulose/graphene oxide-zinc oxide composite for the adsorption of uranium(VI) from aqueous. Mater. Today: Proc. 2020. https://doi.org/10.1016/j.matpr.2020.05.249
28. Hu X., Wang Y., Yang J.Q., Li Y., Wu P., Zhang H., Yuan D., Liu Y., Wu Z., Liu Z. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Front. Chem. Sci. Eng. 2020. 14: 1029. https://doi.org/10.1007/s11705-019-1898-9
29. Perlova O.V., Dzyazko Yu.S., Palchik A.V., Ivanova I.S., Perlova N.O., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya., Dzyazko A.G. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. Appl. Nanosci. 2020. 10: 4591. https://doi.org/10.1007/s13204-020-01313-1
30. Yang A., Zhu Y., Huang C.P. Facile preparation and adsorption performance of graphene oxide-manganese oxide composite for uranium. Sci. Rep. 2018. 8: 9058. https://doi.org/10.1038/s41598-018-27111-y
31. Ali A.H. Potentiality of zirconium phosphate synthesized from zircon mineral for uptaking uranium. Sep. Sci. Technol. 2018. 53(14): 2284. https://doi.org/10.1080/01496395.2018.1445115
32. Tatarchuk T., Shyichuk A., Mironyuk I., Naushad M. A review on removal of uranium(VI) ions using titanium dioxide based sorbents. J. Molec. Liq. 2019. 293: 111563. https://doi.org/10.1016/j.molliq.2019.111563
33. Kapnisti M., Noli F., Misaelides P., Vourlias G., Karfaridis D., Hatzidimitriou A. Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chem. Eng. J. 2018. 342: 184. https://doi.org/10.1016/j.cej.2018.02.066
34. Wang Y., Zeng D., Dai Y., Fang C., Han X., Zhang Z., Cao X., Liu Y. The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water, Air, Soil Pollut. 2020. 231: 464. https://doi.org/10.1007/s11270-020-04817-2
35. Mu W., Yu Q., Zhang R., Li X., Hu R., He Y., Wei H., Jian Y., Yang Y. Controlled fabrication of flower-like α-zirconium phosphate for the efficient removal of radioactive strontium from acidic nuclear wastewater. J. Mater. Chem. A. 2017. 5(46): 24388. https://doi.org/10.1039/C7TA07803J
36. Dzyazko Yu.S., Ogenko V.M., Shteinberg L.Ya., Bildyukevich A.V., Yatsenko T.V. Composite adsorbents including oxidized graphene: effect of composition on mechanical durability and adsorption of pesticides. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 432. https://doi.org/10.15407/hftp10.04.432
37. Dzyazko Yu.S., Ogenko V.M., Volfkovich Yu.M., Sosenkin V.E., Maltseva T.V., Yatsenko T.V., Kudelko K.O. Composite consisting of hydrated zirconium dioxide and graphene oxide for removal of organic and inorganic components from water. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 417. https://doi.org/10.15407/hftp09.04.417
38. Danilov M.O., Rusetskii I.A., Slobodyanyuk I.A., Dovbeshko G.I., Kolbasov G.Y., Strubov Y.Y. Synthesis, properties, and application of graphene-based materials obtained from carbon nanotubes and acetylene black. Ukr. J. Phys. 2016. 7(1): 3.
39. Dzyazko Y.S., Volfkovich Y.M., Sosenkin V.E., Nikolskaya N.F., Gomza Yu.P. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res. Lett. 2014. 9(1): 271. https://doi.org/10.1186/1556-276X-9-271
40. Kadam B.V., Maiti B., Sathe R.M. Selective spectrophotometric method for the determination of uranium(VI). Analyst. 1981. 106(1263): 724. https://doi.org/10.1039/an9810600724
41. Szabo T., Tombacz E., Illes E., Dekany I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon. 2006. 44(3): 537. https://doi.org/10.1016/j.carbon.2005.08.005
42. Myronchuk V., Zmievskii Y., Dzyazko Y., Rozhdestveska L., Zakharov V., Bildyukevich A. Electrodialytic whey demineralization involving polymer-inorganic membranes, anion exchange resin and graphene-containing composite. Acta Periodica Technologica. 2019. 50: 163. https://doi.org/10.2298/APT1950163M
43. Nazarenko V.A., Antonovich V.P., Nevskaya E.M. Hydrolysis of metal ions in diluted solutions. (Moscow: Atomizdat, 1964). [in Russian].
44. Gapel G., Cormelis R., Caruso J.A., Crews H., Heumann K.G. Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health. (Chichester, UK: Wiley, 2005). https://doi.org/10.1002/0470856009
45. Rieman W., Walton H. Ion Exchange in Analytical Chemistry. (Oxford, New York, Toronto, Sydney, Braunschweig: Pergamon Press, 1970).
46. Persson I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010. 82(10): 1901. https://doi.org/10.1351/PAC-CON-09-10-22
47. Maya L. Sorbed uranium(VI) species on hydrous titania, zirconia, and silica gel. Radiochim. Acta. 1981. 31(3-4): 147. https://doi.org/10.1524/ract.1982.31.34.147
48. Almazan-Torres M.G., Drot R., Mercier-Bion F., Catalette H. Den Auwer C., Simoni E. Surface complexation modeling of uranium(VI) sorbed onto zirconium oxophosphate versus temperature: Thermodynamic and structural approaches. J. Colloid Interface Sci. 2008. 323(1): 42. https://doi.org/10.1016/j.jcis.2008.03.041
49. Zakutevskyy O.I., Psareva T.S., Strelko V.V. Sorption of U(VI) ions on sol-gel-synthesized amorphous spherically granulated titanium phosphates, Russ. J. Appl. Chem. 2012. 85(9): 1366. https://doi.org/10.1134/S107042721209011X
50. Volfkovich Y.M. Influence of the electric double layer on the internal interface in an ion exchanger on its electrochemical and sorption properties. Soviet Electrochem. 1984. 20(5): 621.
51. Kinoshita K. Carbon: Electrochemical and Physicochemical Properties. (New York: Wiley, 1988).
52. Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999. 34(5): 451. https://doi.org/10.1016/S0032-9592(98)00112-5
53. Rai G. Chemical kinetics. (New Delhi: Goel Publishing House, 2010).
54. Helfferich F. Ion Exchange. (New York: Dover, 1995).
55. Sazonova V.F., Perlova O.V., Perlova N.A., Polikarpov A.P. Colloid J. 2017. 79(2): 270. https://doi.org/10.1134/S1061933X17020132
56. Perlova O.V., Sazonova V.F., Perlova N.A., Polikarpov A.P. Sorption of uranium(VI) compounds by fibrous cation exchanger FIBAN K-1 from acidic media. Water: Chemistry and Ecology. 2016. 3: 53. [in Russian].
DOI: https://doi.org/10.15407/hftp12.01.018
Copyright (©) 2021 O. V. Perlova, I. S. Ivanova, Yu. S. Dzyazko, M. O. Danilov, I. A. Rusetskii, G Ya. Kolbasov
This work is licensed under a Creative Commons Attribution 4.0 International License.