Effects of silica cluster size and charge state on integral characteristics
DOI: https://doi.org/10.15407/hftp12.02.081
Abstract
The model sizes of solid particles as well as used quantum chemical methods can affect results of calculations with density functional theory (DFT) methods. The aim of this study was to analyze the effects of the silica cluster sizes, a number of bound water molecules, protonation and deprotonation of silanols, addition of Eigen cation alone or solvated, attachment of anions F- and Cl- alone or solvated, and whole solvation effects (with SMD) with the DFT calculations using a functional ωB97X-D with the cc-pVDZ basis set. The calculations of the distribution functions of atom charges (CDF), chemical shifts of the proton resonance (SDF), and integral density of electron states (IDES) show that small clusters with 8 or 22 (SiO4/2) units could give rather inappropriate results in contrast to larger clusters with 44 or 88 units. This is due to the fact that the small silica clusters do not have appropriate capability for delocalization of excess charges that leads to certain distortion of the electron states of the whole system. The IDES are more sensitive with respect to the cluster charging and less sensitive to the solvation effects than the CDF and SDF. As a whole, the use of several types of the distribution functions, such as integral characteristics with the CDF, SDF, and IDES, allows one to obtain a more detailed picture on the interfacial phenomena at silica surface for neutral and charged systems.
Keywords
References
Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).
Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).
Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706
Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).
Tapia O., Bertrán J. (Eds.) Solvent Effects and Chemical Reactivity. (New York: Kluwer Academic Publishers, 2000).
Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
Henderson M.A. Interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Report. 2002. 46(1-8): 1. https://doi.org/10.1016/S0167-5729(01)00020-6
Birdi K.S. (Ed.) Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/b10154
Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Report. 2003. 52(3-4): 63. https://doi.org/10.1016/j.surfrep.2003.09.001
Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
Canuto S. (Ed.) Solvation Effects on Molecules and Biomolecules. Computational Methods and Applications. (Springer, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-8270-2
Schleyer P.v.R. (Ed.) Encyclopedia of Computational Chemistry. (New York: John Wiley & Sons, 1998).
Dykstra C.E., Frenking G., Kim K.S., Scuseria G.E. (Eds.) Theory and Applications of Computational Chemistry, the First Forty Years. (Amsterdam: Elsevier, 2005).
Cramer C.J. Essentials of computational chemistry: theories and models. Second edition. (Chichester, UK: John Wiley & Sons, Ltd, 2008).
Helgaker T., Jorgensen P., Olsen J. Molecular Electronic Structure Theory. (New York: John Wiley & Sons, 2014).
Martin R.M., Reining L., Ceperley D.M. Interacting Electrons: Theory and Computational Approaches. (UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139050807
Engel E., Dreizler R.M. Density Functional Theory: An Advanced Course. (Springer, 2013).
Yang K., Zheng J., Zhao Y., Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010. 132(16): 164117. https://doi.org/10.1063/1.3382342
Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014. 140(18): 18A301. https://doi.org/10.1063/1.4869598
Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n
Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01. (Gaussian, Inc. Wallingford CT, 2013).
Barca G., Bertoni C., Carrington L., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi J.E., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152: 154102.
Gun'ko V.M. Modeling of interfacial behavior of water and organics. J. Theor. Comput. Chem. 2013. 12(07): 1350059. https://doi.org/10.1142/S0219633613500594
Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413
Gun'ko V.M. Effects of methods and basis sets on calculation results using various solvation models. Him. Fiz. Tehnol. Poverhni. 2018. 9(1): 3. https://doi.org/10.15407/hftp09.01.003
Gun'ko V.M. Charge distribution functions for characterization of complex systems. Him. Fiz. Tehnol. Poverhni. 2021. 12(1): 3. https://doi.org/10.15407/hftp12.01.003
Gun'ko V.M., Turov V.V. Structure of hydrogen bonds and 1H NMR spectra of water at the interface of oxides. Langmuir. 1999. 15(19): 6405. https://doi.org/10.1021/la9809372
DOI: https://doi.org/10.15407/hftp12.02.081
Copyright (©) 2021 V. M. Gun’ko
This work is licensed under a Creative Commons Attribution 4.0 International License.