Chemistry, Physics and Technology of Surface, 2021, 12 (2), 90-97.

Creation of bilateral structures of macroporous silicon with nanocoatings for solar cells



DOI: https://doi.org/10.15407/hftp12.02.090

L. A. Karachevtseva, M. T. Kartel, Wang Bo, O. O. Lytvynenko, M. I. Karas, V. F. Onyshchenko

Abstract


We have proposed a new technological solution for the creation of solar energy elements using bilateral structures of macroporous silicon to increase the overall efficiency of converting light energy into electricity. Recently, the research on R&D in solar cell technology has focused mainly on crystalline silicon technologies and photovoltaic systems, including organic ones. The main physical phenomenon that determines the prospects of two-dimensional structures of macroporous silicon with nanocoatings as solar cells is the increase in absorption of electromagnetic radiation and photoconductivity as a result of interaction of optical modes with the developed surface of cylindrical macropores with a barrier on the nanocoating-surface boundary. We fabricated two-sided macroporous silicon structures with nanocoatings for solar cells, including silicon technology, organic nanoformations, and photovoltaic system formation. Silicon is a promising material for the manufacture of structures with a cylindrical geometry of air macropores due to the anisotropy of the cheap process of photoelectrochemical etching. The presence of periodically located cylindrical pores separated by silicon columns provides a large effective surface of the samples and enhanced optical and photophysical characteristics of silicon structures. Polymer composites with nanocoatings with CdS nanocrystals and multilayer carbon nanotubes in polyethyleneimine generate charges of opposite sign on both surfaces of the structures under illumination. The formation of bilateral structures of macroporous silicon with nanocoatings increases the overall energy conversion efficiency in solar cells by up to 60 %. In addition, one can use our proposed solar cells in the upper atmosphere.


Keywords


macroporous silicon; nanocoatings; bilateral structures; solar cell technology

Full Text:

PDF

References


Birner A., Wehrspohn R.B., Gösele U.M., Busch K. Silicon‐based photonic crystals. Adv. Mater. 2001. 13(6): 377. https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X

Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2004. 7(4): 430. https://doi.org/10.15407/spqeo7.04.430

Karachevtseva L.A., Glushko A.E., Ivanov V.I., Lytvynenko O.O., Onishchenko V.F., Parshin K.A., Stronska O.J. Out-of-plane optical transmittance of 2D photonic macroporous silicon structures. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2007. 10(2): 51.

Glushko A., Karachevtseva L. Photonic band structure in oxidized macroporous silicon. Opto-Electron. Rev. 2006. 14(3): 201. https://doi.org/10.2478/s11772-006-0026-9

Glushko A., Karachevtseva L. PBG properties of three-component 2D photonic crystals. Photonics Nanostruct. 2006. 4: 141. https://doi.org/10.1016/j.photonics.2006.02.003

Karachevtseva L., Karas' M., Onishchenko V., Sizov F. Surface polaritons in 2D macroporous silicon structures. Int. J. Nanotechnology. 2006. 3(1): 76. https://doi.org/10.1504/IJNT.2006.008722

Stroyuk A.L., Shvalagin V.V., Kuchmii S.Ya. Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles. J. Photochem. Photobiol. A. 2005. 173(2): 185. https://doi.org/10.1016/j.jphotochem.2005.02.002

Pokhodenko V.D., Kuchmii S.Ya., Korzhak A.V., Kryukov A.I. Photochemical behavior of nanoparticles of cadmium sulfide in the presence of a reducing agent. Theor. Exp. Chem. 1996. 32(2): 88. https://doi.org/10.1007/BF01373092

Karachevtseva L.A., Litvinenko O.A., Stronskaya E.I. Influence of electrochemical parameters on the etching of macropores in silicon. Theor. Exp. Chem. 2003. 39(2): 385. https://doi.org/10.1023/B:THEC.0000013993.88442.0e

Karachevtseva L., Goltviansky Yu., Kolesnyk O., Lytvynenko O., Stronska O. Wannier-Stark effect and electron-phonon interaction in macroporous silicon structures with SiO2 nanocoatings. Opto-Electron. Rev. 2014. 22(4): 201. https://doi.org/10.2478/s11772-014-0199-6

Raevskaya A.E., Stroyuk A.L., Kuchmii S.Ya. Optical characteristics of colloidal nanoparticles of CdS stabilized with sodium polyphosphate and their behavior during pulse photoexcitation. Theor. Exp. Chem. 2003. 39(3): 158.

Awasthi K., Srivastava A., Srivastava O. Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 2005. 5(10): 1616. https://doi.org/10.1166/jnn.2005.407

Karachevtseva L., Kuchmii S., Lytvynenko O., Sizov F., Stronska O., Stroyuk A. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Appl. Surf. Sci. 2011. 257(8): 3331. https://doi.org/10.1016/j.apsusc.2010.11.016

Karachevtseva L.A., Onyshchenko V.F., Sachenko A.V. Kinetics of photoconductivity inmacroporous silicon structures. Ukr. J. Phys. 2008. 53(9): 874.

Holiney R.Yu., Matveeva L.A., Venger E.F., Karachevtseva L.A., Lytvynenko O.A. Electroreflectance study of macroporous silicon surface. Appl. Surf. Sci. 2001. 172(3-4): 214. https://doi.org/10.1016/S0169-4332(00)00861-8

Karachevtseva L.A., Ivanov V.I., Lytvynenko O.O., Parshin K.A., Stronska O.J. The impurity Franz-Keldysh effect in 2D photonic macroporous silicon structures. Appl. Surf. Sci. 2008. 255(5): 3328. https://doi.org/10.1016/j.apsusc.2008.09.038

Karachevtseva L., Kuchmii S., Stroyuk A., Sapelnikova O., Lytvynenko O., Stronska O., Bo Wang, Kartel M. Light-emitting structures of CdS nanocrystals in oxidized macroporous silicon. Appl. Surf. Sci. 2016. 388: 288. https://doi.org/10.1016/j.apsusc.2016.01.069

Karachevtseva L., Kartel M., Wang Bo, Sementsov Yu., Trachevskyi V., Lytvynenko O., Onyshchenko V. Polymer-nanoparticle coatings on macroporous silicon matrix. Adv. Mater. Lett. 2017. 8(4): 2.




DOI: https://doi.org/10.15407/hftp12.02.090

Copyright (©) 2021 L. A. Karachevtseva, M. T. Kartel, Wang Bo, O. O. Lytvynenko, M. I. Karas, V. F. Onyshchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.