Sorption of molecular hydrogen on the graphene-like matrix doped by N- and B-atoms
DOI: https://doi.org/10.15407/hftp12.02.112
Abstract
The regularities of interaction of hydrogen molecules with graphene-like planes, where two carbon atoms are replaced by nitrogen or boron atoms, have been studied by the methods of quantum chemistry (DFT, B3LYP, 6-31G**). To take into account the dispersion contributions to the energy of formation of intermolecular complexes that occur during the formation of adsorption supramolecular structures, Grimme’ dispersion correction is used - D3. To study the effect of the size of a graphene-like cluster on the energy of molecular hydrogen chemisorption, polyaromatic molecules (PAM) are used of pyrene, coronene and that consisting of 54 carbon atoms, as well as their nitrogen- and boron-containing analogues where N- and B-atoms are placed in a para-position relative to each other, in the so-called piperazine configuration.
The insertion of a heteroatom changes the structure of the transition state and the mechanism of chemisorption. An analysis of the results of quantum chemical calculations showed the highest exothermic dissociative adsorption of the H2 molecule on B-containing graphene-like ones. For N-containing PAM, the exothermicity of the mentioned reaction is somewhat lower, for it a possibility of desorption of atomic hydrogen desorption the surface of the latter with subsequent recombination in the gas phase has been also shown. At the same time, for models of pure graphene-like layer, the data obtained indicate the impossibility of chemisorption of molecular hydrogen. Without a complete analysis of the results for all the possible locations of the pair of hydrogen atoms (formed due to dissociation of the H2 molecule) bound by nitrogen-containing polyaromatic molecules, it can be noted that the dissociative chemisorption of the H2 molecule, regardless of the nature of heteroatom in the PAM, is thermodynamically more probable at the periphery of the model molecules than that in their centers.
Keywords
References
Niaz S., Manzoor T., Pandith A.H. Hydrogen Storage: Materials, Methods and Perspectives. Renewable Sustainable Energy Rev. 2015. 50: 457. https://doi.org/10.1016/j.rser.2015.05.011
Uyar T.S., Beşikci D. Integration of hydrogen energy systems into renewable energy systems for better design of 100 % renewable energy communities. Int. J. Hydrogen Energy. 2017. 42(4): 2453. https://doi.org/10.1016/j.ijhydene.2016.09.086
Qi J., Zhang W., Cao R. Solar-to-Hydrogen Energy Conversion Based on Water Splitting. Adv. Energy Mater. 2018. 8(5): 1701620. https://doi.org/10.1002/aenm.201701620
Ross D.K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum. 2006. 80(10): 1084. https://doi.org/10.1016/j.vacuum.2006.03.030
Nagar R., Vinayan B.P., Samantaray S.S., Ramaprabhu S. Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites. J. Mater. Chem. A. 2017. 5: 22897. https://doi.org/10.1039/C7TA05068B
Rajaura R.S., Srivastava S., Sharma P.K., Mathur Sh., Shrivastava R., Sharma S.S., Vijay Y.K. Structural and surface modification of carbon nanotubes for enhanced hydrogen storage density. Nano-Structures & Nano-Objects. 2018. 14: 57. https://doi.org/10.1016/j.nanoso.2018.01.005
Arjunan A., Viswanathan B., Nandhakumar V. Nitrogen-incorporated carbon nanotube derived from polystyrene and polypyrrole as hydrogen storage material. Int. J. Hydrogen Energy. 2018. 43(10): 5077. https://doi.org/10.1016/j.ijhydene.2018.01.110
Chambers A., Park C., Baker R.T.K., Rodriguez N.M. Hydrogen Storage in Graphite Nanofibers. J. Phys. Chem. B. 1998. 102(22): 4253. https://doi.org/10.1021/jp980114l
Murata K.K., Kaneko K., Kanoh H., Kasuya D., Takahashi K., Kokai F., Yudasaka M., Iijima S. Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 2002. 106(43): 1132. https://doi.org/10.1021/jp020583u
Gayathri V., Geetha R. Hydrogen adsorption in defected carbon nanotubes. Adsorption. 2007. 13: 53. https://doi.org/10.1007/s10450-007-9002-z
Dillon A.C., Jones K.M., Bekkedalh T.A., Kiang C.-H. Storage of hydrogen in single-walled carbon nanotubes. Nature. 1997. 386(6623): 377. https://doi.org/10.1038/386377a0
McKay H., Wales D.J., Jenkins S.J., Verges J.A., de Andres P.L. Hydrogen on graphene under stress: Molecular dissociation and gap opening. Phys. Rev. B. 2010. 81: 075425. https://doi.org/10.1103/PhysRevB.81.075425
Lee H., Ihm J., Cohen M.L., Louie S.G. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 2010. 10(3): 793. https://doi.org/10.1021/nl902822s
Ao Z.M., Peeters F.M. High-capacity hydrogen storage in Al-adsorbed graphene. Phys. Rev. B. 2010. 81: 205406. https://doi.org/10.1103/PhysRevB.81.205406
Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112
Becke A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37: 785. https://doi.org/10.1103/PhysRevB.37.785
Jackson K., Jaffar S.K., Paton R.S. Computational organic chemistry. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2013. 109: 235. https://doi.org/10.1039/c3oc90007j
Hutchison G.R., Ratner M.A., Marks T.J. Intermolecular Charge Transfer between Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing on Hopping Transport in Organic Semiconductors. J. Am. Chem. Soc. 2005. 127(48): 16866. https://doi.org/10.1021/ja0533996
Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759
Grimme S. Density functional theory with London dispersion corrections. Wires Comput. Mol. Sci. 2011. 1(2): 211. https://doi.org/10.1002/wcms.30
Alrawashdeh A.I., Lagowski J.B. The role of the solvent and the size of the nanotubein the non-covalent dispersion of carbonnanotubes with short organic oligomers-a DFTstudy. RSC Adv. 2018. 8: 30520. https://doi.org/10.1039/C8RA02460J
Wales D.J., Berry R.S. Limitations of the Murrell-Laidler theorem. J. Chem. Soc. Faraday Trans. 1992. 88: 543. https://doi.org/10.1039/FT9928800543
Fukui K. The path of chemical reactions - the IRC approach. Acc. Chem. Res. 1981. 14(12): 363. https://doi.org/10.1021/ar00072a001
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. 39: 228. https://doi.org/10.1039/B917103G
Koopmans T. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica. 1934. 1(1-6): 104. https://doi.org/10.1016/S0031-8914(34)90011-2
Bellafont N.P., Illas F., Bagus P.S. Validation of Koopmans' theorem for density functional theory binding energies. Phys. Chem. Chem. Phys. 2015. 17: 4015. https://doi.org/10.1039/C4CP05434B
DOI: https://doi.org/10.15407/hftp12.02.112
Copyright (©) 2021 M. T. Kartel, V. V. Lobanov, E. M. Demyanenko, Wang Bo, A. G. Grebenyuk, O. S. Karpenko
This work is licensed under a Creative Commons Attribution 4.0 International License.