Chemistry, Physics and Technology of Surface, 2021, 12 (2), 124-134.

Ratchet effect in brownian photomotors: symmetry constraints and going beyond them



DOI: https://doi.org/10.15407/hftp12.02.124

M. L. Dekhtyar, V. M. Rozenbaum, N. G. Shkoda, M. I. Ikim

Abstract


The symmetry conditions have been derived for the occurrence of the ratchet effect in Brownian photomotors. To this end, spatiotemporal symmetry operations in vector transformations, coordinate and time shifts, and in the overdamped regime were applied to the average photomotor velocity taken as a functional of the coordinate- and time-dependent potential energy. As established, individual Brownian particles (molecules) can move directionally only provided a symmetrically distributed charge fluctuates in them and they are placed on the substrates with an antisymmetric charge distribution or, vice versa, they are characterized by antisymmetrically distributed charge fluctuations and are placed on symmetric substrates. The collective directed motion of orientation-averaged particles is possible only in the former case. If a particle charge distribution is described by a time dependence with the universal type of symmetry (i.e., simultaneously symmetric, antisymmetric, and shift-symmetric), an additional symmetry constraint on the ratchet functioning arises: the ratchet effect is ruled out in the overdamped regime but allowed for inertial moving particles if the charge distributions in both the particle and the substrate are neither symmetric nor antisymmetric.

The effect of the universal type of symmetry is exemplified by dipole photomotors derived from donor-acceptor conjugated organic molecules. With a specific type of molecular photoexcitation and a specific relationship of the dipole moments in the ground and excited states, the ratchet effect becomes symmetry-forbidden. The forbiddenness can be removed by molecular polarization effects, which in this case become the predominant factor governing the direction of the motion and average velocity of photomotors. The estimated velocities of polarization photomotors are an order of magnitude larger than for known motor proteins and dipole Brownian photomotors. These results can be helpful in the purposeful molecular design of dipole photomotors.


Keywords


molecular devices; ratchet effect in Brownian photomotors; symmetry constraint; donor-acceptor systems; polarization effects

Full Text:

PDF

References


Huxley F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 1957. 7: 255. https://doi.org/10.1016/S0096-4174(18)30128-8

Feynman R.P., Leighton R.B., Sands M. The Feynman Lectures on Physics. (Addison-Wesley: Reading, 1963).

Quastel J.H. Molecular transport at cell membranes. Proc. R. Soc. 1965. B 163: 169. https://doi.org/10.1098/rspb.1965.0065

Sauvage J.-P., Dietrich-Buchecker C. (Eds.). Molecular Catenanes, Rotaxanes and Knots: A Journey through the World of Molecular Topology. (Wiley-VCH: Weinheim, 1999). https://doi.org/10.1002/9783527613724

Michl J., Sykes E.C.H. Molecular rotors and motors: recent advances and future challenges. ACS Nano. 2009. 3(5): 1042. https://doi.org/10.1021/nn900411n

Deng H., Olson M.A., Stoddart J.F., Yaghi O.M. Robust dynamics. Nat. Chem. 2010. 2: 439. https://doi.org/10.1038/nchem.654

Kudernac T., Ruangsupapichat N., Parschau M., Macia B., Katsonis N., Harutyunyan S.R., Ernst K.-H., Feringa B.L. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature. 2011. 479: 208. https://doi.org/10.1038/nature10587

Peplow M. The tiniest Lego: a tale of nanoscale motors, switches and pumps. Nature. 2015. 525: 18. https://doi.org/10.1038/525018a

Lau B., Kedem O., Schwabacher J., Kwasnieski D., Weiss E.A. An introduction to ratchets in chemistry and biology. Mater. Horiz. 2017. 4: 310. https://doi.org/10.1039/C7MH00062F

Jülicher F., Ajdari A., Prost J. Modeling molecular motors. Rev. Mod. Phys. 1997. 69(4): 1269. https://doi.org/10.1103/RevModPhys.69.1269

Astumian R.D. Thermodynamics and kinetics of a Brownian motor. Science. 1997. 276(5314): 917. https://doi.org/10.1126/science.276.5314.917

Reimann P. Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 2002. 361(2-4): 57. https://doi.org/10.1016/S0370-1573(01)00081-3

Krishnan R., Mahato M.C., Jayannavar A.M. Brownian rectifiers in the presence of temporally asymmetric unbiased forces. Phys. Rev. E. 2004. 70: 021102. https://doi.org/10.1103/PhysRevE.70.021102

Hänggi P., Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009. 81: 387. https://doi.org/10.1103/RevModPhys.81.387

Cubero D., Renzoni F. Brownian Ratchets: From Statistical Physics to Bio and Nano-motors. (Cambridge: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781107478206

José Antonio Fornés Principles of Brownian and Molecular Motors. (Cham, Switzerland: Springer Nature Switzerland AG, 2021). https://doi.org/10.1007/978-3-030-64957-9

Dekhtyar M.L., Ishchenko A.A., Rozenbaum V.M. Photoinduced molecular transport in biological environments based on dipole moment fluctuations. J. Phys. Chem. B. 2006. 110(41): 20111. https://doi.org/10.1021/jp063795q

Dekhtyar M.L., Rozenbaum V.M. Nonequilibrium molecular transport photoinduced by potential energy fluctuations. J. Chem. Phys. 2011. 134(4): 044136. https://doi.org/10.1063/1.3544219

Dekhtyar M.L., Rozenbaum V.M. Symmetry interplay in Brownian photomotors: From a single-molecule device to ensemble transport. J. Chem. Phys. 2012. 137(12): 124306. https://doi.org/10.1063/1.4754274

Rozenbaum V.M., Dekhtyar M.L., Lin S.H., Trakhtenberg L.I. Photoinduced diffusion molecular transport. J. Chem. Phys. 2016. 145(6): 064110. https://doi.org/10.1063/1.4960622

Denisov S., Flach S., Hänggi P. Tunable transport with broken space-time symmetries. Phys. Rep. 2014. 538: 77. https://doi.org/10.1016/j.physrep.2014.01.003

Cubero D., Renzoni F. Hidden symmetries, instabilities, and current suppression in Brownian ratchets. Phys. Rev. Lett. 2016. 116(1): 010602. https://doi.org/10.1103/PhysRevLett.116.010602

Rozenbaum V.M., Shapochkina I.V., Teranishi Y., Trakhtenberg L.I. Symmetry of pulsating ratchets. JETP Lett. 2018. 107: 506. https://doi.org/10.1134/S0021364018080039

Rozenbaum V.M., Shapochkina I.V., Teranishi Y., Trakhtenberg L.I. Symmetry of deterministic ratchets. Phys. Rev. E. 2019. 100(2): 022115. https://doi.org/10.1103/PhysRevE.100.022115

Ikim M.I., Dekhtyar M.L., Rozenbaum V.M., Bugaev A.S., Trakhtenberg L.I. Symmetry of Brownian photomotors. Russ. J. Phys. Chem. B. 2020. 14: 332. https://doi.org/10.1134/S1990793120020074

Dekhtyar M.L., Rozenbaum V.M. Symmetry rules for Brownian photomotors. MATCH Commun. Math. Comput. Chem. 2014. 71: 609.

Rozenbaum V.M. High-temperature Brownian motors: Deterministic and stochastic fluctuations of a periodic potential. JETP Lett. 2008. 88: 342. https://doi.org/10.1134/S0021364008170128

Abe J., Shirai Y., Nemoto N., Nagase Y. Manipulation of dipole moment and hyperpolarizability based on heterocyclic pyridinium betaine structures: ab initio and INDO/S MO calculations. J. Phys. Chem. B. 1997. 101(10): 1910. https://doi.org/10.1021/jp962157c

Pawlowska Z., Lietard A., Aloïse S., Sliwa M., Idrissi A., Poizat O., Buntinx G., Delbaere S., Perrier A., Maurel F., Jacques P., Abe J. The excited state dipole moments of betaine pyridinium investigated by an innovative solvatochromic analysis and TDDFT calculations. Phys. Chem. Chem. Phys. 2011. 13(29): 13185. https://doi.org/10.1039/c1cp20920e

Dekhtyar M.L., Rozenbaum V.M., Trakhtenberg L.I. Polarization effects in organic dipole photomotors. Theor. Exp. Chem. 2019. 55: 232. https://doi.org/10.1007/s11237-019-09613-6

AMPAC 6.0 and AMPAC 6.55. (Shawnee, KS: Semichem, Inc., 1997).

Svoboda K., Schmidt C.F., Schnapp B.J., Block S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993. 365: 721. https://doi.org/10.1038/365721a0

Astumian R.D., Bier M. Fluctuation driven ratchets: Molecular motors. Phys. Rev. Lett. 1994. 72(11): 1766. https://doi.org/10.1103/PhysRevLett.72.1766




DOI: https://doi.org/10.15407/hftp12.02.124

Copyright (©) 2021 M. L. Dekhtyar, V. M. Rozenbaum, N. G. Shkoda, M. I. Ikim

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.